

LABORATORY OF FUNDAMENTAL AND APPLIED PHYSICS CADI AYYAD UNIVERSITY, SAFI, MOROCCO

PROBING CHARGED HIGGS BOSONS IN THE 2HDM TYPE-II WITH VECTOR-LIKE QUARKS

MOHAMMED BOUKIDI

IN COLLABORATION WITH: R. BENBRIK AND S.MORETTI

Phys.Rev.D 109, 055016

42ND INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS (ICHEP 2024)

Prague, Jul 20, 2024

OUTLINE

1 INTRODUCTION

2 FRAMEWORK

- 2HDM PARAMETRIZATION
- VLQ PARAMETRIZATION

3 NUMERICAL RESULTS

4 CONCLUSION

MOTIVATION

- Higgs properties measurements at run 1 and run 2 are in a good agreement with the SM
- ✦ Perhaps other scalars are not yet discovered
- Two Higgs Doublet Model (2HDM)
 - ✤ Minimal extension to the SM
 - Rich collider phenomenology
 - ♦ LHC benchmark mode
 - Benchmarks for light/heavy charged Higgs
 - ✦ Benchmarks for light/heavy neutral Higgses

C. Patrignani et al., Particle Physics Group, Chin. Phys. C, 40 100001

MOTIVATION

- \star LH and RH same $SU(2)_L$ transformation.
- ***** VLQs don't get their mass from the Higgs: $m\psi\bar{\psi}$.
- **VLQs** can mix with SM quarks and 2HDM Higgses.
- ***** VLQs are the simplest type of colored fermions still experimentally allowed.

\bigstar	VLQs could	be singlet,	doublet or tri	plet under Sl	$U(2)_{L}.$
------------	------------	-------------	----------------	-----------------	-------------

Component fields	T	B	TB	XT	BY	TBY	XTB
$U(1)_Y$	2/3	-1/3	1/6	7/6	-5/6	-1/3	2/3
$SU(2)_L$	1	1	2	2	2	3	3
$SU(3)_C$	3	3	3	3	3	3	3

* VLQs have the electric charges: $Q_T = \frac{2}{3}$, $Q_B = -\frac{1}{3}$, $Q_X = \frac{5}{3}$, and $Q_Y = -\frac{4}{3}$.

2HDM PARAMETRIZATION

The most general scalar potential of the 2HDM [Branco, G. et al. Phys.Rept. 516 (2012)]:

$$V(\Phi_{1}\Phi_{2}) = \boldsymbol{m}_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1} + \boldsymbol{m}_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \left[\boldsymbol{m}_{12}^{2}\Phi_{1}^{\dagger}\Phi_{2} + \text{h.c.}\right] + \frac{\boldsymbol{\lambda}_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\boldsymbol{\lambda}_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \boldsymbol{\lambda}_{3}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{2}^{\dagger}\Phi_{2}\right) + \boldsymbol{\lambda}_{4}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)\left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \left\{\frac{\boldsymbol{\lambda}_{5}}{2}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + \left[\boldsymbol{\lambda}_{6}\left(\Phi_{1}^{\dagger}\Phi_{1}\right) + \boldsymbol{\lambda}_{7}\left(\phi_{2}^{\dagger}\Phi_{2}\right)\right]\Phi_{1}^{\dagger}\Phi_{2} + \text{h.c.}\right\}$$
(1)

with :

$$\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ + i\varphi_{1,2}^+ \\ \frac{1}{\sqrt{2}} \left(v_{1,2} + \rho_{1,2} + i\eta_{1,2} \right) \end{pmatrix}$$
(2)

5

• The 10 independent parameters $(m_{11}^2, m_{22}^2, m_{12}^2, \lambda_{1,\dots,7})$ are assumed to be real.

2HDM PARAMETRIZATION

- ◆ Introduced to avoid flavor-changing neutral currents (FCNCs) at tree level.
- Each Higgs doublet transforms under $Z_2: \Phi_1 \to \Phi_1, \Phi_2 \to -\Phi_2$.
 - **Type I**: One doublet couples to all fermions.
 - **Type II**: One doublet couples to up-type quarks, the other to down-type quarks and leptons.
 - **+ Lepton-specific (Type X)**: One doublet couples to quarks, the other to leptons.
 - + Flipped (Type Y): One doublet couples to up-type quarks and leptons, the other to down-type quarks.
- 2 minimization conditions and the combination $v_1^2 + v_2^2 = v^2 \implies 7$ free parameters:

 $m_h, m_H, m_A, m_{H^\pm}, s_{eta-lpha}, aneta=rac{v_2}{v_1} ext{ and } m_{1,2}^2.$

VLQ PARAMETRIZATION

★ In the Higgs basis, the Yukawa Lagrangian can be written as:

$$-\mathcal{L} \supset y^{u} \bar{Q}_{L}^{0} \tilde{H}_{2} u_{R}^{0} + y^{d} \bar{Q}_{L}^{0} H_{1} d_{R}^{0} + M_{u}^{0} \bar{u}_{L}^{0} u_{R}^{0} + M_{d}^{0} \bar{d}_{L}^{0} d_{R}^{0} + h.c.$$

 \bigstar When only the top quark "mixes" with *T*:

$$\begin{pmatrix} t_{L,R} \\ T_{L,R} \end{pmatrix} = U_{L,R}^u \begin{pmatrix} t_{L,R}^0 \\ T_{L,R}^0 \end{pmatrix} = \begin{pmatrix} \cos \theta_{L,R}^u & -\sin \theta_{L,R}^u e^{i\phi_u} \\ \sin \theta_{L,R}^u e^{-i\phi_u} & \cos \theta_{L,R}^u \end{pmatrix} \begin{pmatrix} t_{L,R}^0 \\ T_{L,R}^0 \end{pmatrix} ,$$

★ In the weak eigenstate basis the diagonalisation of the mass matrices makes the Lagrangian of the third generation and heavy quark mass terms such that:

$$\mathcal{L}_{\text{mass}} = - \left(\bar{t}_{L}^{0} \ \bar{T}_{L}^{0} \right) \begin{pmatrix} y_{33}^{u} \frac{v}{\sqrt{2}} & y_{34}^{u} \frac{v}{\sqrt{2}} \\ y_{43}^{u} \frac{v}{\sqrt{2}} & M^{0} \end{pmatrix} \begin{pmatrix} t_{R}^{0} \\ T_{R}^{0} \end{pmatrix} \\ - \left(\bar{b}_{L}^{0} \ \bar{B}_{L}^{0} \right) \begin{pmatrix} y_{33}^{d} \frac{v}{\sqrt{2}} & y_{34}^{d} \frac{v}{\sqrt{2}} \\ y_{43}^{d} \frac{v}{\sqrt{2}} & M^{0} \end{pmatrix} \begin{pmatrix} b_{R}^{0} \\ B_{R}^{0} \end{pmatrix} + \text{h.c.},$$

 M^0 is a bare mass and the y_{ij} 's are Yukawa couplings. While $y_{43} = 0$, for the singlet and $y_{34} = 0$, for the doublet.

★ Using standard techniques of diagonalisation, the mixing matrices are obtained by

$$U_L^q \mathcal{M}^q (U_R^q)^\dagger = \mathcal{M}_{diag}^q$$

★ Using the above equation and depending on the VLQs representation one can find:

$$\tan \theta_R^q = \frac{m_q}{m_Q} \tan \frac{\theta_L^q}{m_L} \quad \text{(singlet)},$$
 $\tan \theta_L^q = \frac{m_q}{m_Q} \tan \frac{\theta_R^q}{m_R} \quad \text{(doublet)},$

CONSTRAINTS

Theoretical

- ★ Unitarity The variety of scattering process must be unitary.
- ★ **Perturbativity** constraints impose the following condition on the quartic couplings of the scalar potential: $|\lambda_i| < 8\pi$
- * Vacuum stability constraints require the potential be bounded from below and positive in any direction of the fields Φ_i , consequently, the parameter space must satisfy the following conditions:

$$\begin{split} \lambda_1 &> 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \\ \lambda_3 &+ \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}. \end{split}$$

2HDMC-1.8.0 (D. Eriksson, J. Rathsman and O. Stal [0902.0851])

Experimental

- ★ EWPOs, implemented through the EW oblique parameters *S*, *T*, we require $\Delta \chi^2 (S^{VLQ} + S^{2HDM}, T^{VLQ} + T^{2HDM}) \le 6.18.$
- SM-like Higgs boson discovery: an agreement between selected points in parameter space and the current measurements of the properties of the discovered Higgs boson at 125 GeV is enforced by means of the publicly available cod HiggsSignals-3 via HiggsTools.
- ★ Non-SM-like Higgs boson exclusions: to check the parameter space points against the exclusion limits from null Higgs boson searches at LEP, Tevatron and,

in particular, the LHC, we apply the public code HiggsBounds-6 via HiggsTools .

★ B-physics observables are tested against data by resorting to the public code SuperIso_v4.1, (mainly $B \to X_s \gamma$, $B_{s,d} \to \mu^+ \mu^-$ and $B_s \to \tau \nu$).

2HDM-II+T **Singlet Scenario**

$$-\mathcal{L}_{H^+} = \frac{\sqrt{2}}{v} \bar{t} \left(\kappa_t m_t P_L - \kappa_b m_b P_R\right) bH^+ + h.c., \tag{3}$$

42nd International Conference on High Energy Physics (ICHEP 2024)

2HDM-II+T **Singlet Scenario**

2HDM-II+T **Singlet Scenario**

Parameters	Scanned ranges							
2HDM	2HDM							
m_H	[130, 800]							
m_A	[80, 800] [80, 800] [0.5, 20]							
$m_{H^{\pm}}$								
$\sin(\beta - \alpha)$								
2HDM-II+(\overline{T}							
SI	$\frac{[-05,05]}{[-05,05]}$							
m_T	[750, 2600]							
1.0 $\bullet T \to H^+b$ 1.1	$0 \qquad H^+ \to W^+ A$							
• $T \rightarrow ht$	• $H^+ \rightarrow \tau \nu_{\tau}$							
$0.8 \qquad \bullet \qquad T \to W^+ b \qquad = \qquad 0.1$	$8 \begin{bmatrix} & H^+ \rightarrow tb \end{bmatrix}$							
$ \qquad \qquad$								
$\mathbf{\hat{\kappa}}_{0.6}$	6							
$\mathcal{X}^{0.4}$	4							
	2							
	DUU (UU 800							

• The signal (4b2t) can exceed 100 fb for $m_T <= 1000$ GeV.

CONCLUSION

- In the doublet scenario (2HDM-II+(TB)), the charged Higgs mass limit is reduced to approximately 200 GeV (and 360 GeV after including EWPOs constraint).
- In the 2HDM-II+(*TB*) model, the branching ratio of $T \rightarrow H^+b$ is nearly 100%, while in the 2HDM-II+(*T*) model, it is only 25%.
- The decay of $H^{\pm} \rightarrow tb$ results in a final state with two top and four bottom quarks (2*t*4*b*), with the signal rate reaching up to 100 fb in the 2HDM-II+(*TB*) scenario.

VLT PAIR PRODUCTION AT THE LHC

A.ARHRIB, R. BENBRIK, M.BERROUJ, M.B, B. MANAUT [arXiv:2407.01348]

VLT PAIR PRODUCTION AT THE LHC

A.ARHRIB, R. BENBRIK, M.BERROUJ, M.B, B. MANAUT [arXiv:2407.01348]

MC: VLT PAIR PRODUCTION AT THE LHC A.ARHRIB, R. BENBRIK, M.BERROUJ, M.B, B. MANAUT [arXiv:2407.01348]

$$\mathcal{Z}_{disc} = \sqrt{2 \left[(s+b) \ln \left(\frac{(s+b)(1+\delta^2 b)}{b+\delta^2 b(s+b)} \right) - \frac{1}{\delta^2} \ln \left(1+\delta^2 \frac{s}{1+\delta^2 b} \right) \right]}.$$

$$\mathcal{Z}_{excl} = \sqrt{2 \left[s-b \ln \left(\frac{s+b+x}{2b} \right) - \frac{1}{\delta^2} \ln \left(\frac{b-s+x}{2b} \right) \right] - (b+s-x) \left(1+\frac{1}{\delta^2 b} \right)}.$$

with $x = \sqrt{(s+b)^2 - 4\delta^2 s b^2} / (1+\delta^2 b)$., In the limit of $\delta \to 0$, these expressions simplify to:

$$\mathcal{Z}_{disc} = \sqrt{2\left[(s+b)\ln\left(1+s/b\right)-s\right]}, \qquad \mathcal{Z}_{excl} = \sqrt{2\left[s-b\ln\left(1+s/b\right)\right]}.$$

42nd International Conference on High Energy Physics (ICHEP 2024)

MC: VLT PAIR PRODUCTION AT THE LHC A.ARHRIB, R. BENBRIK, M.BERROUJ, M.B, B. MANAUT [arXiv:2407.01348]

