Searching for heavy neutral leptons through exotic Higgs decays Pre-print available! arXiv:2309.11254

Simon Thor¹, Masaya Ishino², Junping Tian² ¹KTH Royal Institute of Technology, Sweden ²University of Tokyo, Japan

Abstract

In this study we investigate the feasibility of detecting heavy neutral leptons (N_d) through exotic Higgs decays at the proposed International Linear Collider (ILC), specifically in the channel of $e^+ e^- \rightarrow qqH$ with $H \rightarrow \nu N_d \rightarrow \nu IW \rightarrow \nu I qq$. Analyses based on full detector simulations of the ILD are performed at the center-of-mass energy of 250 GeV for two different beam polarization schemes with a total integrated luminosity of 2 ab⁻¹. A range of heavy neutral lepton masses between the Z boson and Higgs boson masses are studied. The 2σ significance reach for the joint branching ratio of BR($H \rightarrow \nu N_d$) BR($N_d \rightarrow IW$) is about 0.1%, nearly independent of the heavy neutral lepton masses, while the 5σ discovery is possible at a branching ratio of 0.3%. Interpreting these results in terms of constraints on the mixing parameters $|\varepsilon_{id}|^2$ between SM neutrinos and the heavy neutral lepton, it is expected to have a factor of 10 improvement from current constraints.

Heavy neutral leptons

- Several Beyond Standard Model (BSM) theories predict heavy neutral leptons (HNL, denoted N_d here) • Can solve several problems:
- 1) Give mass to the SM neutrinos via type-I Seesaw mechanism [1,2]

~7.4 (12.4) km

- 2) Explain matter-antimatter asymmetry [3]
- If $m_{Nd} < m_H$: $H \rightarrow N_d \nu$ is predicted
- Decays via weak force for many models
- In this study, assume:
- 1) N_d mixes with all SM neutrinos (mixing angles ε_{ed} , $\varepsilon_{\mu d}$, $\varepsilon_{\tau d}$) *
- 2) Decays: $N_d \rightarrow I W$ and $N_d \rightarrow \nu Z^*$
- 3) $m_Z < m_{Nd} < m_H$

e- Linac

Beamline

7 mrad

*These assumptions are only made when constraining the mixing angles. For our mass range, typically BR($N_d \rightarrow I W$)>80%

4) Short-lived

e-: ±0.8, e+: ±0.3

~2000 fb⁻¹

International Linear Collider

Problem: No signs of BSM at colliders yet

- Higgs boson one of the least understood particles
- \rightarrow Might be connected to BSM
- \rightarrow Precision measurements of Higgs are crucial

Solution: International Linear Collider (ILC)

- Main goal: Detailed studies of the Higgs boson, mainly produced from Higgs-strahlung at 250 GeV \rightarrow
- Linear accelerator enables polarized beam
- Main candidate location: Iwate prefecture, Japan

Properties of ILC Colliding particles e+ ereaion e-/e+ DR Accelerator shape Linear e+ Linac ⋜∝న 7 mrad Beamline Center-of-mass energy 250, 350, or 500 GeV ~20 km (for 250 GeV) Length

~20.5 km

~ 2.25 km

. ~ 1.1 km

~ 2.25 km

~ 5.6 km

~7.5 (12.5) km Not To Scale

• Already existing detector designs

Method Machine learning cuts **Rectangular cuts** Goal **Pre-selection** Boosted decision tree (BDT) • Cuts are optimized to maximize Used to extract relevant parameters What is the sensitivity Data significance • Apply cut on BDT output to for upcoming steps of the ILC for detecting • Full detector simulations • Separate cuts for each HNL mass maximize significance heavy neutral leptons and beam polarization • 12 input parameters (reconstructed 1) Event generation: Whizard **Requirements** 2) Parton shower + hadronization: HNL mass, Higgs mass etc.) 1) At least one isolated lepton using exotic Higgs

• Use neural network lepton finder

• Train separate BDTs for each HNL

Signal

Free parameters

1) HNL mass 2) BR(H \rightarrow N_d ν)BR(N_d \rightarrow I W)

4) Reconstruction: Marlin

 \sim

Beam polarization

Integrated luminosity

- Beam polarizations: (-0.8, +0.3), (+0.8, -0.3)
- 1000 fb⁻¹ of each beam polarization • √s = 250 GeV

Signal

- Simulated N_d masses: 95, 100, 105, 110, 115, 120 GeV
- 200 000 events / beam polarization

Background

Pythia6

• Pre-made full detector simulation events for ILC

*Percentages are not exact as they vary depending on beam polarization and HNL mass

• Background remaining: ~10⁻⁵*

Results

100 P

• Largest background:

• Discovery (5 σ) of HNL possible at BR > ~0.3% • Exclusion (2 σ) of HNL possible at BR > ~0.1%

Summary

- Heavy neutral leptons (HNL, N_d) are predicted by many theories • ILC is a proposed collider that can be used for high-precision studies of the Higgs boson
- In this study, the first ever full detector simulation of searching for the $H \rightarrow N_d v$ exotic decay was performed
- The proposed ILD detector was simulated, at $\sqrt{s} = 250$ GeV, with 1000 fb⁻¹ each of the beam polarizations (-0.8, +0.3), (+0.8, -0.3)
- Both rectangular cuts and BDT cuts were used to remove

- Equal sensitivity for all HNL masses • 25x better than HL-LHC [4]
- Calculate mixing angle between SM neutrinos and HNL using the branching ratio **10x** improvement on mixing angle constraint compared to current constraints [5,6]

 10^{-2}

 10^{-3}

 10^{-4}

- First ever full detector **simulation** study for exotic Higgs decays to HNL
- ILC enables highprecision measurements of exotic Higgs decays

background

• BR($H \rightarrow N_d \nu$)BR($N_d \rightarrow I W$) could be constrained to 0.1% \rightarrow 25x improvement compared to HL-LHC Mixing angle could be constrained to $\sim 10^{-4}$ \rightarrow 10x improvement compared to current constraints

References

[1] T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Progress of Theoretical Physics 64, 1103 (1980), https://academic.oup.com/ptp/article-pdf/64/3/1103/5394376/64-3-1103.pdf.

[2] A. Das, P. S. Dev, and C. Kim, Constraining sterile neutrinos from precision higgs data, Physical Review D 95, 10.1103/physrevd.95.115013 (2017).

[3] E. Hall, T. Konstandin, R. McGehee, H. Murayama, and G. Servant, Baryogenesis from a dark first-order phase transition, Journal of High Energy Physics 2020, 10.1007/jhep04(2020)042 (2020).

[4] A. Das, Y. Gao, and T. Kamon, Heavy neutrino search via semileptonic higgs decay at the LHC, The European Physical Journal C 79, 10.1140/epjc/s10052-019-6937-7 (2019).

[5] . D. Bolton, F. F. Deppisch, and P. B. Dev, Neutrinoless double beta decay versus other probes of heavy sterile neutrinos, Journal of High Energy Physics 2020, 10.1007/jhep03(2020)170 (2020).

[6] A. Das, Y. Gao, and T. Kamon, Heavy neutrino search via semileptonic higgs decay at the LHC, The European Physical Journal C 79, 10.1140/epjc/s10052-019-6937-7 (2019).

ALC: N