

UNIVERSITÉ DF GFNÈVF

A Top Friendship: Measurement of $t\bar{t}H$ **PRIMENT** production in the H(bb) decay channel at ATLAS with Transformer Networks

Yusong Tian (yusong.tian@cern.ch), on behalf of the ATLAS Collaboration II. Physikalisches Institut, Georg-August-Universität Göttingen

The $t\bar{t}H(H \rightarrow bb)$ Analysis in a Nutshell

- Top quark heaviest \Rightarrow strong Yukawa coupling
- $t\bar{t}H$: direct measurement of top Yukawa
- Subsequent $H \rightarrow bb$ has largest branching ratio (58%)

s-channel $t\bar{t}H(b\bar{b})$ production

Measure $t\bar{t}H(bb)$!

 $t\overline{t}H$ interesting for new physics

 $t\overline{t} + b\overline{b}$ background

• Simplified template cross-section (STXS) framework ⇒ measure in 6 STXS Higgs p_T regions the signal strength μ_i , to probe p_T dependent deviations from SM

GEORG-AUGUST-UNIVERSITÄI

Bundesministerium

GEFÖRDERT VON

für Bilduna

und Forschung

- **Challenge**: large $t\bar{t}$ + jets background due to jets from b- or c- quarks
- Analysis done on 140 fb⁻¹ of 13 TeV p-p data in 1 or 2 lepton (electron/muon) final states

Improved multivariate analysis strategy over [1] using transformer NN for

- Classification of signal and background events
- Higgs candidates reconstruction for p_T^H

Event Classification and Higgs p_T Reconstruction

- Three channels: dilepton, single-lepton resolved, DNN-selected single-lepton boosted
- Pre-selection for events with certain number of jets and *b*-jets:

channel	# jets ($R=0.4$) at WP,	in which $\#$ jets at WP	# jets ($R = 1.0$)
dilepton	3 at 85 %	2 at 70 %	
single- ℓ resolved	5	3 at 70 %	
single- ℓ boosted	4	3 at 85 %	1

Looser requirements than previous analysis: pre-selection efficiency for $t\bar{t}H$ 6.3% around 3 times higher

- Events separated into signal and control regions:

Signal and Background Classification Performance

- The transformer NN approach in this analysis improved over the BDT approach as used previously [5]
- AUC 0.753 for single-lepton resolved and 0.774 for dilepton

Higgs *p*_T **Reconstruction Performance**

Classification transformer gives 6 discriminant values for each class: $t\bar{t}H$ signal, $t\overline{t} + 1b$, $t\overline{t} + 1B$, $t\overline{t} + \ge 2b$, $t\overline{t} + \ge 1c$, $t\overline{t} + \text{light backgrounds}$

$$d_i = rac{p_i}{\sum\limits_{j \neq i} p_j \cdot \hat{N}_{ij}}, ext{ weights } \hat{N}_{ij} = rac{N_j}{\sum\limits_{k \neq i} N_k} ext{from remaining classes}$$
 (1)

- p: probability, N: expected event yield
- Definition of discriminant function works well
- Cut values on $d_{t\bar{t}H}$ for considering events signal-like: from max $(\frac{S}{\sqrt{R}})$
- Background grouping decided by the highest of the 5 d_i for bkg
- **Reconstruction transformer** obtains p_T^H : predict which 2 jets most likely from H decay, get p_T^H from combining jet four-vectors
- Better performance than getting p_T^H from regression, whose predictions shift to central STXS bins

The Transformer Neural Networks

- Transformer models like GPT [2] utilise attention mechanism [3]. Similar architecture used for $t\bar{t}H(bb)$ analysis
- Permutation-invariant architecture: ordering of input objects does not matter • Uses: kinematic information of recon-

Results of the Analysis

- Excess of $t\bar{t}H(bb)$ events: observed (expected) significance 4.6 (5.4) std dev
- $t\bar{t}H$ signal strength for $m_H = 125.09 \text{ GeV} \ \mu_{t\bar{t}H} = 0.81 \pm 0.11 \text{(stat.)} \ ^{+0.20}_{-0.16} \text{(syst.)}$, crosssection $\sigma_{t\bar{t}H} = 411 \pm 54$ (stat.) $^{+85}_{-75}$ (syst.) fb, consistent with SM
- Measured in STXS bins

structed electrons, muons, jets, E_T^{miss} ; pseudo-continuous *b*-tagging score • Trained on: classification - $t\bar{t}H$ signal, $t\bar{t}$ + jets bkg; reconstruction - only $t\bar{t}H$

Residual scheme modified from [3], where two separate residual connections are employed around the multi-head self-attention and the multi-layer perception sub-layers Modified residual scheme results in:

- Less dependency on earlier blocks
- Slightly higher average classification ac-

For p_T^H reco, pairing layer similar to [4]

Conclusions & Outlook

• Run 2 legacy analysis, significantly improved over the last analysis [1]

- Benefited from various improvements, including transformer NN used for MVA:
 - Define signal region and control regions
 - Higgs $p_{\rm T}$ reconstruction
- Discriminant function defined for event classification performs well
- Reconstructing jets from Higgs decay: better performance than obtaining p_T^H from regression

- ATLAS Collaboration, Measurement of Higgs boson decay into b-quarks in associated production with a top-quark pair in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP 06 (2022) 097
- T. Brown et al., Language Models are Few-Shot Learners, Advances in Neural Information Processing Systems, ed. by H. Larochelle et al., 33, Curran Associates, Inc., 2020, 1877
- A. Vaswani et al., Attention is all you need, Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17, Long Beach, California, USA: Curran Associates Inc., 2017, 6000
- M. J. Fenton et al., Permutationless many-jet event reconstruction with symmetry preserving attention networks, Phys. Rev. D 105 (2022) 112008
- ATLAS Collaboration, Search for the standard model Higgs boson produced in association with top quarks and decaying into a $b\overline{b}$ pair in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 072016

42nd International Conference on High Energy Physics (ICHEP 2024), Prague, Czech Republic, 18.7.2024