

New ATLAS $t\bar{t}H(bb)$ Run 2 Analysis

By Zefran Rozairo, University of Glasgow, on behalf of the ATLAS collaboration

What's so special about $t\bar{t}H$?

- It's a direct probe of the top Yukawa coupling, which is the largest in the Standard Model
- Measuring this could allow us to probe potential beyond the standard model effects
- Measuring the the $H(b\overline{b})$ final state presents a major challenge to discriminate the q^{-000} signal from the massive $t\bar{t}$ background

What have we improved from the previous analysis?

- Improvements on object definitions, in particular Particle Flow for the jets and improved b-tagging
- Updated calibrations, along with better b-tagging uncertainties and new high p_T extrapolation uncertainties^[1] and looser event selection
- New attention-based transformer network^[2] to improve the Higgs candidate reconstruction and define the signal and control region events
- Improved $t\bar{t}$ modelling, including systematics fully based on $t\bar{t}b\bar{b}$ matrix elements with 4 Flavor Scheme PDFs
- Looser event selection allows for eight control regions to control backgrounds in data and increases signal acceptance by a factor of three

Event yields per region

Event pre-selection requirements

Channel	# of jets	# of b-tags at 70%	# of b-tags at 85%	# of leptons	# of τ	# of RC jets
Di-lepton	≥ 3	≥ 2	≥ 3	2	-	-
ℓ+jets resolved	≥ 5	≥ 3	≥ 3	1	≤1	_
ℓ+jets boosted	≥4	-	≥ 3	1	≤1	≥1

Results

enhanced sensitivity of 15% high p_t Higgs single-lepton STXS bin of $[450, \infty]$ GeV compared to where the resolved selection is applied to these events.

this boosted selection we see an

1.1**⊧**

$\sigma_{t\bar{t}H} = 411^{+54}_{-54}(stat.)^{+85}_{-75}(syst.)$ fb $\sigma_{t\bar{t}H.SM} = 507^{+35}_{-50}$ fb

1.05₿

Summary

Overall, this analysis^[3] is more sensitive and precise compared the previous analysis^[4]. These improvements are mainly driven by the adoption of the transformer network, improved systematic model and looser event selection enabling improved signal and background separation. The statistically limited high p_T event analysis is enhanced using a dedicated boosted analysis. This result is consistent with the SM prediction. We hope to improve the precision, especially in our statistically limited areas with the Run-3 data set.

References

- ATLAS Collaboration, Simulation-based extrapolation of b-tagging calibrations [1] towards high transverse momenta in the ATLAS experiment, ATL-PHYS-PUB-2021-003, 2021
- A. Vaswani et al., Attention Is All You Need, 2023, arXiv: 1706.03762
- [3] Measurement of the associated production of a top-antitop-quark pair and a Higgs boson decaying into a bb^- pair in pp collisions at \sqrt{s} =13 TeV using the ATLAS detector at the LHC ERN-EP-2024-194, arXiv:2407.10904
- [4] ATLAS Collaboration, Measurement of Higgs boson decay into *b*-quarks in associated production \sqrt{s} = 13TeV with the ATLAS detector, JHEP 06 (2022) 097

42nd International Conference on High Energy Physics, Prague, Cz, 18 - 24 Jul 2024