# **Exploring Charged Higgs Bosons in** the Georgi-Machacek Model:



Latest Findings from the ATLAS Experiment at LHC

## Introduction

- Search for  $H^{\pm} \rightarrow W^{\pm}Z$  and  $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$  produced via the Vector Boson Fusion mechanism in fully leptonic final states,  $\ell \nu \ell \ell$  and  $\ell \nu \ell \nu$ , respectively
- Full LHC Run 2 data with an integrated luminosity of 140 fb<sup>-1</sup>
- Results interpreted in the Georgi-Machacek (GM) Model
- $\succ$ Set 95% confidence level (CL) upper limits on the model-dependent parameter in a wide mass range

# **Georgi-Machacek Model**<sup>[1]</sup>

Extension of SM Higgs sector with both real and complex triplets ( $\xi$ ,  $\chi$ )

- The EWSB is realized by three scalar fields
- Minimal triplet extension with custodial symmetry preserved
- $\triangleright$ Different multiplets under SU(2): quintuplet  $(H_5)$ , triplet  $(H_3)$ , two singlets (h, H)

### H5Plane Benchmark is considered, assuming $m_3 > m_5$

- $BR(H^{\pm} \rightarrow W^{\pm}Z) = 1$  and  $BR(H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}) = 1$
- Vector Boson Fusion production
- $\triangleright$ Model dependent parameters:

 $m_{H_5}$  (degenerate state mass), sin  $\theta_H$  (fraction of triplet contribution to VEV)

Signal samples generated with MadGraph for the WZ and same-sign WW (ssWW)  $\triangleright$ 

$$\sin \theta_{\rm H} = \frac{2\sqrt{2} v_{\chi}}{v} \qquad v_{\phi}^2 + 8v_{\chi}^2 \equiv v^2 \approx (246 \text{ GeV})^2$$



**SM Higgs Sector** 



jet

# **Previous Studies at ATLAS**<sup>[2,3]</sup>

#### Search for $H^{\pm} \rightarrow W^{\pm}Z$

- Artificial Neural Network (ANN) for **VBF** signal selections
- Dedicated WZ-QCD Control Region

Search for  $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ 

Signal extraction was performed via  $\triangleright$ a 2D fit (m<sub>ii</sub>, m<sub>T</sub>)

[2] Eur. Phys. J. C 83 (2023) 633

3 JHEP04(2024)026

[4] arXiv:2407.10798

#### Model dependent exclusion limits

More sensitive by the ssWW in lower mass range





# **Combination Strategies**

### Orthogonality

The WZ-QCD CR in ssWW analysis dropped due to overlap

jet

### Systematics Correlation

- Conservative approach always followed  $\geq$
- Combination still dominated by statistics

### pQCD order harmonization

- Two signal samples generated at different pQCD  $\triangleright$
- Both samples scaled to NNLO by QCD K-factors
- $\geq$ Normalization factors uncertainties added



| Combination signal extraction fit |                                                                                    |
|-----------------------------------|------------------------------------------------------------------------------------|
| Region                            | Description                                                                        |
| SR WZ                             | 9 bins in $m_{\rm WZ}$                                                             |
| SR same-sign WW                   | 5 bins in $m_{jj}$ and 8 bins in $m_{\rm T}$                                       |
| CR ZZ                             | 17 bins in $m_{\rm WZ}$                                                            |
| $CR W^{\pm}Z - QCD$               | 9 bins in $m_{\rm WZ}$                                                             |
| CR Low- <i>m</i> <sub>jj</sub>    | 1 bin in $m_{jj}$ and 8 bins in $m_{\rm T}$                                        |
| Parameter of interest             | $\mu(H_5)$                                                                         |
| Normalisation parameters          | $\mu(W^{\pm}Z - \text{QCD}), \mu(ZZ) \text{ and } \mu(W^{\pm}W^{\pm} - \text{EW})$ |
| Observables                       | $m_{\mathrm{WZ}}, m_{jj}$ and $m_{\mathrm{T}}$                                     |



Post-fit m<sub>WZ</sub> and m<sub>T</sub> distributions under the Standard Model background-only hypothesis

#### GM Exclusion limits on $\sin \theta_H$

- Excluding  $\sin \theta_H$  values greater than 0.10 0.36
- Improvements of 6% 22% for all the mass points
- Largest local significance: **3.3 σ at 375 GeV**, global



Haoran Zhao (University of Washington) **On behalf of the ATLAS Collaboration**