

Search for top-quark-associated production of heavy scalar or pseudoscalar in pp collisions at 13 TeV

Chainika Chauhan

Faculty of Mathematics and Physics, Charles University, Prague

1. MOTIVATION & OBJECTIVES

- Inconsistencies between theoretical and experimental Standard Model (SM) $t\bar{t}t\bar{t}$ process: • Prediction 2 of $t\bar{t}t\bar{t}$ production from the SM : $13.37^{+1.04}_{-1.78}$ fb
- Measurement 3 of the $t\bar{t}t\bar{t}$ production: $22.5^{+6.6}_{-5.5}$ fb
- Analysis targets:
- Search for Two-Higgs-Doublet-Model [4] (2HDM) type-II signal • Signal: $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$
- Interpretation for low $tan\beta$ region in the alignment limit, $sin(\beta \alpha) \rightarrow 1$ where h couplings are similar to the SM Higgs boson and $tan\beta$ is the ratio of the vacuum-expectation-values of the two Higgs doublets. Reinterpretation of results in sgluon Model
- 1. Feynaman diagram for production of scalar/pseudoscalar Higgs [1], decay channels for four-top-quarks process
- All plots are available here [1]

 $\blacksquare \text{ Signal: } S_8S_8 \to t\bar{t}t\bar{t}$

Similar search published in multi-lepton channel [6].

2. OBJECT & EVENT PRESELECTION

Decay Channel: one lepton (1L) and di-lepton opposite sign channel (2LOS)

Name	$N_{b}^{60\%}$	$N_{b}^{70\%}$	$N_b^{85\%}$
2b	-	= 2	-
3bL	≤ 2	= 3	-
3bH	= 3	= 3	> 3
3bV	= 3	= 3	= 3
\geq 4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

2. Schematic view of event categorisation for 1L

3. Summary of b-tagging requirements

3. BACKGROUNDS PROCESSES

- Major Background: $t\bar{t}$ +jets ($t\bar{t}$ + $\geq 1b$, $t\bar{t}$ + $\geq 1c$, $t\bar{t}$ +light), SM $t\bar{t}t\bar{t}$
- **Minor Background**: $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}Z$, single top quark, V(=W,Z)+jets, (less than 1% - $t\bar{t}t$, $t\bar{t}WW$, $t\bar{t}WZ$, tZ)

(A		
	1 1	I -
The ATLAS Preliminary		Data 🗔
	T	Dala
- 00000 Ja 10 T-V 100 H-1		
$\square 20000 \square VS = 13 IeV. 139 ID$		tī light

5. STATISTICAL ANALYSIS

- A binned profile likelihood fit performed including all SRs and CRs of both channels.
- $\mathbf{t}\overline{t}$ modelling systematic uncertainties dominate the results.
- Jet Energy Scale (JES) and Jet Energy Resolution (JER) have highest contribution from experimental systematics.

5. Post-fit distribution of the GNN Score

<u>95%</u> CL upper limits on the cross section of the production estimated.

4. SIGNAL-BACKGROUND DISCRIMINATION

A mass parameterized message passing graph neural network (GNN). **GNN** input variables :

Node	Edge	Global
Object p_T , η , E, b-	$\Delta\eta$, $\Delta\phi$, ΔR be-	H_T , m_{ll} for 2LOS and m_T for 1L,, N_{jets} ,
tagging score, Object	tween pairs of objects	$NRCjets_{m>100}, M_{bbb}^{avg}, \Delta R_{bb}^{min}, \Delta R_{bl}^{min},$
type encoding num-		$\left \frac{\sum_{i} p_{T_i}}{\sum_{i} E_i} \right $, Sum of pcb for the first 6 jets
ber		$\sum_{i<6}pcb_i$, $\sum d_{12}$, $\sum d_{23}$, $rac{\sum_{i=0}^3 p_{Ti}}{\sum_{i>4} p_{Ti}}$

6. Expected and observed 95% CL upper limits on the cross-section times branching fraction

- 95% CL lower limits on the values of $tan\beta$ as a function of mass of Higgs.

7. Expected and observed 95% CL lower limits on tan β as a function of $m_{H/A}$ [1]

6. CONCLUSION

A search for heavy scalar or pseudoscalar Higgs in $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ in 1LOS channel performed. Excluded $tan\beta$ values at 0.4(1.0) TeV below ■ 1.7(0.7) when scalar and pseudoscalar both contribute

≥13

- \blacksquare 1.2(0.5) when scalar or pseudoscalar contribute
- Reinterpretation of results in the context of sgluon model
- Mass signals $m_{s_8} < 1500$ GeV excluded.

REFERENCES

- ATLAS collaboration. (2024). ATLAS-CONF-2024-002. M. van Beekveld et al. (2022). arXiv: 2212.03259. ATLAS collaboration. *EPJC* 06 (2023). G. Branco et al. *Physics Reports* 1–2 (2012), pp. 1–102.
- L. Darmé et al. *JHEP* 09 (2021). ATLAS collaboration. JHEP 07 (2023). L. Garrido et al. *CPC* 01 (1998).

