Studies of rare Higgs decay H \rightarrow Z γ in CMS at $\sqrt{s} = 13$ TeV

ICHEP 2024

Yu-Hsuan Chou (National Central University, Taiwan) on behalf of the CMS collaboration 42nd International Conference On High Energy Physics

Introduction

The rare decay channel $H \rightarrow Z\gamma \rightarrow II\gamma$ has the clean final state that the Higgs boson can be reconstructed with high mass resolution. The loop diagrams make it sensitive to BSM.

Signal & Background modeling

The fitting on refit M_{IIV} in 105–170GeV is performed.

• Signal model : Fit the signal MC sample with Crystal

Ball function+Gaussian.

• Background model :

Fit the data with turn-on considered.

 $\int_{0}^{170} \text{Gaussian Falling spectrum Step func.} N(m_{ll\gamma} - t; \mu, \sigma) f(t; \vec{\alpha}) \Theta(s, t) dt$ **J**₁₀₅

Event selection

The total integrated luminosity of Run-2 data is 138 fb⁻¹. The dominant backgrounds are SM Z+jets and Zy process.

High level trigger	Dielectron/Dimuon \rightarrow reduce the event rate
Lepton selection	Leading e(µ) P _T > 25(20) GeV Trailing e(µ) P _T > 15(10) GeV M _{II} > 50 GeV → exclude H→ $\gamma^*\gamma$ channel
Photon selection	E _T > 15 GeV
3-body selection	Photon $E_T/M_{II\gamma} > 15/110$ $\Delta R(I,\gamma) > 0.4$ $M_{II}+M_{II\gamma} > 185 \text{ GeV} \rightarrow \text{reject Z+jets background}$
Analysis method	 Final state radiation (FSR) recovery → add FSR γ energy to reconstructed muon Kinematic refit → refit the M_{II} distribution by true Z shape

CMS Run-2 results

Dijet 1 is the most sensitive category among 8 categories. The observed(expected) limit on the signal strength relative to the SM prediction is 4.1 (1.8).

After all analysis methods are applied, the expected and observed significance is 1.2σ and 2.7σ , respectively.

Categorization

To improve the sensitivity, the events are separated into inclusive categories by tagging the additional particles from different Higgs production processes.

ATLAS & CMS combination

Evidence for $H \rightarrow Z\gamma$ decay has been found after the combined results of ATLAS and CMS experiment, with an observed significance of 3.4σ . The observed signal yield is 2.2 \pm 0.7 times the SM prediction.

- The study of rare Higgs boson decay channel $H \rightarrow Z\gamma \rightarrow II\gamma$ is performed and analysis workflow is introduced.
- The observed significance of CMS Run-2 results is 2.7σ and the observed limit is 4.1.
- The first evidence of this channel with 3.4 σ by the combination of CMS and ATLAS results.

[1] Evidence for the Higgs Boson Decay to a Z Boson and a Photon at the LHC, Physical Review Letters, 132(2309.03501) [2] Search for Higgs Boson Decays to a Z boson and a Photon in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV, J. High Energy Phys. 05 (2023) 233.