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Physics Motivation 

Real Time Tracking Challenges 

Track Classification in 28nm 
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Motivation

We know there is 
physics to discover At particle colliders, 

tracking is crucial
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Illustrative Example

Mixed Higgs-scalar scenarios lead to 
many soft b-quarks (like di-Higgs).  
- Overwhelmed by QCD background 
- Swap cross section for lepton trigger 

from associated W/Z  
 limited sensitivity→

1312.4992, 2111.12751, 2109.03294

s bb region→

https://arxiv.org/abs/1312.4992
https://arxiv.org/pdf/2111.12751
https://arxiv.org/pdf/2109.03294
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Just Scout It?

Perhaps use scouting to alleviate this? 
HLT resolution within 10% of offline.  

Ex. CMS scouting for RPV Higgsino’s 
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetTriggerPublicResults#2024_pp_data
https://arxiv.org/abs/2401.06630
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The Limitation
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Current technology 
cannot handle O(PB/sec) 
data rates so we trigger. 

This decision is made 
without tracking 

information.  

CMS is similar numbers 
but will have outer 
tracker information 
(strips) for HL-LHC

https://arxiv.org/abs/2401.06630
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Consequences
1706.04965, 1703.10485 

Lesson already learned adding tracking into jet reconstruction via particle 
flow (PFlow) algorithm  resolution and fake rejection improve→
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Just Park It?
2403.16134

After HLT save a higher data rate 
to a delayed stream, consume less 
online resources 

Shortcomings: 
- acceptance limited because of 

L1 trigger 
- No way we can park O(PB/s) of 

data
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Real time tracking is crucial 

2010.13557, CERN-CMS-DP-2022-021, 2306.09738 

CMS w/ outer tracker
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The blue line is the b-tag NN used in 
these studies, while the orange line is 
a more complex architecture that 
better mimics offline algorithms for b-
tagging by using a gated recurrent 
unit (GRU) but is too large to be run 
in the Level-1 Trigger environment.
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https://arxiv.org/abs/2010.13557
https://cds.cern.ch/record/2814728
https://arxiv.org/abs/2306.09738
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Technical Challenges

To utilize tracking information, 
need readout chips capable of 
handling the physics conditions 

Benchmark is the RD53 conditions 
for HL-LHC. Strict constraints so 
trigger rate at 1 MHz / 750 kHz

RD53 Collaboration, IEEE 10182033 

Talk by Flavio Loddo

https://indico.cern.ch/event/1007887/contributions/4229673/attachments/2188205/3703957/Trento2021_Loddo.pdf
https://ieeexplore.ieee.org/document/10182033
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Data Reduction at the Source

Aim to achieve tracking at 40 
MHz within strict conditions 

Key insight: moving data is 
expensive, doing computation 
cheaper  perform data 
reduction at the source could

→

Horowitz in 45nm, UIUC Lectures, Nhan Tran

Cost of Operations

Mark Horowitz. Energy table for 45nm process, Stanford VLSI wiki
via Han et al., Learning both Weights and Connections for Efficient Neural Networks 

https://gwern.net/doc/cs/hardware/2014-horowitz-2.pdf
https://misailo.web.engr.illinois.edu/courses/598sm/lec4.pdf
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Machine Learning on Chip

Question: Can ML on chip perform 
effective data reduction at the source? 

Key challenges: 
- operate on silicon within power, 

space, timing constraints  
- deliver the required data reduction to 

meet bandwidth requirements 

Diagram of pixel sensors + 
readout chip

Sensors

analog+digital
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Machine Learning on Chip

Can ML on chip perform effective data 
reduction at the source? 

Definitions: 
- ML = digital or analog neural networks 
- Effective data reduction = maximize/

minimize amount of signal/background 
data saved to meet technical constraints 

- At the source = front end electronics, 
bump bonded to sensor, 40 MHz

Diagram of pixel sensors + 
readout chip

Sensors

12 µm50 µm

25 µm

analog+digital

smartpixels
Broader Applications

Could imagine distributed ML across detectors 
more generally …  Smart Detectors 

Examples:  
- Beam-induced background at a MuC 
- Dual readout calorimeters 
- Ultra-high granularity sampling calorimeters 
- Pixel LArTPCs

10.1007, 1808.02969, 1809.10213
LArPix ASIC

Signal wirebonds

Charge-collection pad

Data PCB
Shielding layer

Pixel PCB

Focusing grid

Neighboring ASIC

Ionizing particle
Drift electrons

Figure 2. A cross-section diagram of the readout plane. Ionization electrons were collected on gold-plated
copper pads on the Pixel PCB. The signals from each pad were transmitted via wire bonds to a unique input
channel on a 32-channel LArPix ASIC. The ASIC amplified, digitized, and multiplexed the digital signals
out of the system. The Data PCB provided power as well as data input and output routing for the ASIC. The
shielding layer reduced the cross-talk from the Data PCB digital activity to the Pixel PCB.

Figure 3. Left: Photograph of the TPC-facing side of a pixelated readout system. A total of 832 pads are
etched on a standard two-layer circuit board. Ten di�erent pad configurations are included in order to assess
their relative performance. Right: Photograph of the back side of the readout assembly. Four LArPix ASICs
are mounted on a two-layer data PCB responsible for routing system power and digital communication. For
this readout system only 128 of the pads are instrumented, each wire bonded to a unique analog input of the
ASICs through oblong cavities cut in the data PCB.

Communication with the DAQ computer occurs via standard 802.11 WiFi techniques, facilitating
electrical isolation of the entire TPC readout system from the external environment.

– 7 –

µ+µ- √s = 1.5 TeV
BIB mostly < 200 MeV

LArPix TPC Facing Side

https://link.springer.com/article/10.1007/s41781-021-00067-x
https://arxiv.org/abs/1808.02969
https://arxiv.org/abs/1809.10213
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Physics Setup CMS-NOTE-2002-027, 2310.02474

Particle passing through a 100 µm 
thick single layer of silicon with 
small pitch 12.5 x 50 µm2 pixels 

Non-exhaustive list of important details:  
- Tracked data taken from CMS with pT up to ~5 GeV. 
- Untracked data not included and includes CMS acceptances  
- PixelAV silicon simulation used 
- Single 100µm thick layer of silicon with 12.5x50 µm2 pixels  
- Overall sensor area 16x16 mm2 
- Bias voltage of -100 V 
- Simulation assumes only pions input 
- Charge deposition recorded every 200ps 
- Sitting on a cylinder of radius 30 mm 
- 3.8 TeV B-field parallel to x-coordinate

Smart Pixel Sensors 5

• The detector is immersed in a 3.8T magnetic field parallel to the x coordinate.

The detector response is simulated using a time-sliced version of PixelAV [16], which

provides: an accurate model of charge deposition by primary hadronic tracks (in particular

to model delta rays), a realistic electric field map resulting from the simultaneous solution

of Poisson’s Equation, carrier continuity equations, and various charge transport models, an

established model of charge drift physics including mobilities, Hall E↵ect, and 3-D di↵usion,

a simulation of charge trapping and the signal induced from trapped charge, and a simulation

of electronic noise, response, and threshold e↵ects. A particularly valuable aspect of PixelAV

used in this study is time evolution of the drift and induced currents in the pixel sensor.

(a) (b)

Figure 2: (a): A schematic of the pixel sensor area and the specific region of interest (blue)

of 21⇥13 pixels for a given cluster. The magnetic field is parallel to the sensor x coordinate.

(b): A diagram of three charged particles traversing our simulated silicon sensor at the same

y0 position. The sensor is viewed in the bending plane of the magnetic field. The solid track

corresponds to a charged particle with high pT , while the two dashed tracks correspond to

low pT particles with opposite charge.

Figure 2 sketches out key features of the pixel sensor and corresponding strategies

employed by this paper. Within the pixel sensor area, we define a cluster region of interest,

shown in blue, which corresponds to 21⇥13 pixels in x and y, respectively. This region is

large enough to fully encompass a charge cluster and serves as input to the ML algorithm

used to extract cluster features. The position (x, y) where the charged particle traverses the

sensor mid-plane is uniformly distributed across the central 3 ⇥ 3 pixel array. The shape

Smart Pixel Sensors 4

Finally, our study relies on previous work for translating neural network algorithms into

circuits using the hls4ml [12, 13] workflow. In particular, the first implementation using

hls4ml to build a reconfigurable ASIC [14] for calorimeter on-detector data compression

provides a basis for much of the technology developed in this paper.

2. Sensor geometry and dataset

2.1. Simulated data

The studies in this paper are based on a simulated dataset of silicon pixel clusters produced

by charged particles (pions) [15]. The kinematic properties of the incident particles are

taken from fitted tracks in CMS 13 TeV collision data. Figure 1 shows the pT distribution of

these particles in blue. Because particles with very low transverse momentum (pT ) are not

reconstructed as tracks in CMS, the distribution turns on above 100 MeV. The corresponding

pT distribution corrected for losses due to ine�ciency of the CMS tracker is shown in orange.

Figure 1: Transverse momentum (pT ) of simulated particles (blue) and the pT distribution

corrected for tracking ine�ciency (orange).

To study a concrete sensor configuration, we make the following assumptions about our

future pixel sensors:

• The sensor plane is described by coordinates x and y, while the z direction is normal to

the sensor. The pixel pitch is taken to be 50µm ⇥ 12.5µm in x⇥ y.

• The overall pixel sensor area is 16⇥16mm2 and its thickness is 100µm.

• The sensor is situated on a cylinder of radius 30mm, with the particle’s origin at its

center. Particle interactions are simulated at varying positions of the sensor along the

cylinder’s axis.

• A bias voltage of -100V is applied.

https://cds.cern.ch/record/687440?ln=en
https://arxiv.org/pdf/2310.02474.pdf
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Example Tracks

pT = 1.9 GeV pT = 135 MeV 

2310.02474

Can see visually high (left) vs low (right) pT tracks 
bending in B-Field and different cluster shapes

https://arxiv.org/pdf/2310.02474.pdf
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Classification Network

Flat signal efficiency for track pT > 2 

GeV. Data reduction of 57.1 - 75%. 

Non-exhaustive list of important details:  

- Input: y-profile of charge, no timing 

- Output: predict if pT > 200 MeV 

- QKeras quantized 2 Layer DNN  

- Translated to silicon with CatapultAI 

- Power consumption 300µW

flat efficiency for track pT > 2 GeV

2010.13557, 2310.02474,  2312.11676, CatapultAI

https://arxiv.org/abs/2010.13557
https://arxiv.org/pdf/2310.02474.pdf
https://arxiv.org/abs/2312.11676
https://newsroom.sw.siemens.com/en-US/siemens-catapult-ai-nn/
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Chip Tape-out

28nm CMOS demonstrated to be 
radiation tolerant by CERN. First tape-
out in new technology node at Fermilab 

Layout: 
- 2x2 pixel analog islands (within black boxes) 

surrounded by digital with DNN and 
test interface (purple space) 

- Taped-out as super pixels (16x4) 
corresponding to 32x8 physical pixels 

2406.14860

https://arxiv.org/abs/2406.14860
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First Test: Check for Timing Violations

Loopback test to check for timing violation 
when a signal does not propagate through the circuits within the 

required time constraints, may cause unstable circuit behavior

No violations are seen 
Now working on high statistics pattern 

pulsing to test the analog+DNN
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Next Steps

Lots of work to do but lets assume 
everything works and mention exciting 
future directions 

- Build a bigger chip to bond to a real 
sensor and examine in a test beam 

- Analog NN: real edge computing, 
reduce digitization (1 ADC for entire 
chip as opposed to 1 per pixel)

Fermilab Test Beam Facility 
Not our telescope but 

hopefully one day

Opportunities for neuromorphic computing algorithms and applications 
Classical (~digital) vs Neuromorphic Computing (~analog)

https://ftbf.fnal.gov
https://www.nature.com/articles/s43588-021-00184-y
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Physics Motivation 
To study the electroweak symmetry breaking and search for new physics 
we need real time tracking

Real Time Tracking Challenges 
Data reduction at the source with ML on chip is an exciting R&D avenue to 
achieve real time tracking

Track Classification in 28nm 
Developed a classification network to predict track momentum and taped 
it out in 28nm CMOS. First steps toward creating the new technology
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SM+s Scenario

Mixed Higgs-scalar scenarios lead to many soft b-quarks (like di-Higgs). Large 
QCD background overwhelms data rate, so swap cross section for leptonic 

trigger from associated W/Z. This makes analysis possible but limits sensitivity.

1312.4992, 2111.12751, 2109.03294

https://arxiv.org/abs/1312.4992
https://arxiv.org/pdf/2111.12751
https://arxiv.org/pdf/2109.03294
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Displaced Track DM Scenario
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CMS/ATLAS Trigger Schemes

Rest of CMS/
ATLAS

Outer 
Tracker 

Inner 
Tracker Buffer

High Level 
Trigger

Buffer

Buffer

Level 1 Trigger

40 MHz

40 MHz

40 MHz

40 MHz

750/100 kHz

750/100 kHz

750/100 kHz

7.5/3 kHz

 2209.15519, CERN-LHCC-2017-020

https://arxiv.org/pdf/2209.15519.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2017-020/
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Tracking
2010.13557, CERN-CMS-DP-2022-021

( σpT

pT ) ∼
pT

BL2

σpoint

N

⟨L⟩ ∼ 100 mm × ( E
TeV )

B-meson decay length

CMS Phase 2

ATLAS Phase 2

https://arxiv.org/abs/2010.13557
https://cds.cern.ch/record/2814728
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v1 chip
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Smart Pixel Sensors 7

(a) (b) (c)

Figure 4: Distribution of y-profile at di↵erent y0: (a) �1 < y0 < 1 mm, (b) �8 < y0 < �6

mm, and (c) 6 < y0 < 8 mm. Shown separately for positively charged low pT particles (red),

negatively charged low pT particles (blue) and high pT particles of both signs (black).

information, the simulation also records the induced and collected charge in each pixel at

200 picosecond time intervals.

Figure 5: Cluster y-size vs. y0 for di↵erent values of particle charge and pT . The decrease

in cluster size from the left to right side of the sensor plane is due to Lorentz drift.

2.2. Untracked data

The simulated dataset described above is derived from clusters in the CMS detector that are

combined with signatures in other detector layers to form particle tracks. In an example 2022

CMS data taking run, only about 40% of clusters in the innermost layer of the CMS pixel

detector are associated with tracks in this way. The remaining 60% of clusters, designated

y-profile vs y0, visible Lorentz drift
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Neural Network Design



34Anthony Badea (UChicago) — Future Smart Detectors

Chip Photos
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Chip Tape-out Details
Technical: 
- Analog island with amplifier and 2-bit ADC 
- Digital logic surrounding with DNN inside 

(translated with CatapultAI) 
- 28nm CMOS process from TSMC with Muse

2406.14860

Logistics: 
- Received chip back last month June ’24 
- ~$14k/mm2, 1.5 mm2 tape-out ~ $30k

https://arxiv.org/abs/2406.14860
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Test Bench

Test bench that tests the core functionality of the chip. Reusable for 
future tape-outs. Builds upon Spacely (Adam Quinn)

2406.15181

https://arxiv.org/abs/2406.15181

