Future Smart Detectors

Intelligent Pixel Detectors: Towards a Radiation Hard ASIC with On-Chip Machine Learning in 28nm CMOS

Anthony Badea

Enrico Fermi Institute, UChicago 20 July 2024 ICHEP, Prague

Outline

Physics Motivation

Anthony Badea (UChicago) — Future Smart Detectors

Real Time Tracking Challenges

Track Classification in 28nm

Motivation

We know there is physics to discover

Anthony Badea (UChicago) — Future Smart Detectors

At particle colliders, tracking is crucial

Illustrative Example

Mixed Higgs-scalar scenarios lead to many soft b-quarks (like di-Higgs).

- Overwhelmed by QCD background
- Swap cross section for lepton trigger from associated W/Z

 \rightarrow limited sensitivity

Just Scout It?

Perhaps use scouting to alleviate this? HLT resolution within 10% of offline. Ex. CMS scouting for RPV Higgsino's

Anthony Badea (UChicago) — Future Smart Detectors

Limited by the L1 (hardware) trigger!

The Limitation

Anthony Badea (UChicago) — Future Smart Detectors

Current technology cannot handle O(PB/sec) data rates so we trigger.

This decision is made without tracking information.

CMS is similar numbers but will have outer tracker information (strips) for HL-LHC

Consequences

Lesson already learned adding tracking into jet reconstruction via particle flow (PFlow) algorithm \rightarrow resolution and fake rejection improve

After HLT save a higher data rate to a delayed stream, consume less online resources

Shortcomings:

- acceptance limited because of L1 trigger
- No way we can park O(PB/s) of data

Motivation

Real time tracking is crucial

CMS Phase-2 Outer Tracker (OT)

OT hits point back to displaced vertex

Anthony Badea (UChicago) — Future Smart Detectors

>10x Improvement with Full Tracker Not easy to implement online

Anthony Badea (UChicago) — Future Smart Detectors

Real Time Tracking Challenges

Technical Challenges

To utilize tracking information, need readout chips capable of handling the physics conditions

Benchmark is the RD53 conditions for HL-LHC. Strict constraints so trigger rate at 1 MHz / 750 kHz

Anthony Badea (UChicago) — Future Smart Detectors

Talk by Flavio Loddo

	ATLAS/CMS
Chip size	20x21mm ² /21.6x18.6mm ²
Pixel size	50x50 μm²
Hit rate	3 GHz/cm ²
Trigger rate	1 MHz/750kHz
Trigger latency	12.5 us
Min. threshold	600 e-
Radiation tolerance	500 Mrad @-15C
Power	< 1W/cm ²

Data Reduction at the Source

Aim to achieve tracking at 40 MHz within strict conditions

Key insight: moving data is expensive, doing computation cheaper \rightarrow perform data reduction at the source could

Anthony Badea (UChicago) — Future Smart Detectors

Horowitz in 45nm, UIUC Lectures, Nhar

Cost of Operations

Mark Horowitz. Energy table for 45nm process, Stanford VLSI wiki via Han et al., Learning both Weights and Connections for Efficient Neural Networks

٦	Т	r	а	n	

Question: Can ML on chip perform effective data reduction at the source?

Key challenges:

- operate on silicon within power, space, timing constraints
- deliver the required data reduction to meet bandwidth requirements

Anthony Badea (UChicago) — Future Smart Detectors

Broader Applications

Could imagine distributed ML across detectors more generally ... Smart Detectors

Examples:

- Beam-induced background at a MuC
- Dual readout calorimeters
- Ultra-high granularity sampling calorimeters
- Pixel LArTPCs

Anthony Badea (UChicago) — Future Smart Detectors

Track Classification in 28nm

Physics Setup

Particle passing through a 100 µm thick single layer of silicon with small pitch 12.5 x 50 μ m² pixels

Non-exhaustive list of important details:

- Tracked data taken from CMS with p_T up to ~5 GeV.
- Untracked data not included and includes CMS acceptances
- PixelAV silicon simulation used
- Single 100µm thick layer of silicon with 12.5x50 µm² pixels
- Overall sensor area 16x16 mm²
- Bias voltage of -100 V
- Simulation assumes only pions input
- Charge deposition recorded every 200ps
- Sitting on a cylinder of radius 30 mm
- 3.8 TeV B-field parallel to x-coordinate

Example Tracks

Can see visually high (left) vs low (right) pT tracks bending in B-Field and different cluster shapes

Classification Network

Flat signal efficiency for track $p_T > 2$ GeV. Data reduction of 57.1 - 75%.

Non-exhaustive list of important details:

- Input: y-profile of charge, no timing _
- Output: predict if $p_T > 200 \text{ MeV}$ -
- **QKeras quantized 2 Layer DNN** -
- Translated to silicon with CatapultAI _
- Power consumption 300µW

Chip Tape-out

28nm CMOS demonstrated to be radiation tolerant by CERN. First tapeout in new technology node at Fermilab

- Layout:
- 2x2 pixel analog islands (within black boxes) surrounded by digital with DNN and test interface (purple space)
- Taped-out as super pixels (16x4) corresponding to 32x8 physical pixels

First Test: Check for Timing Violations

Loopback test to check for timing violation when a signal does not propagate through the circuits within the required time constraints, may cause unstable circuit behavior

Anthony Badea (UChicago) — Future Smart Detectors

No violations are seen

Now working on high statistics pattern pulsing to test the analog+DNN

Lots of work to do but lets assume everything works and mention exciting future directions

- Build a bigger chip to bond to a real sensor and examine in a test beam - Analog NN: real edge computing, reduce digitization (1 ADC for entire chip as opposed to 1 per pixel)

Anthony Badea (UChicago) — Future Smart Detectors

Fermilab Test Beam Facility Not our telescope but hopefully one day

Opportunities for neuromorphic computing algorithms and applications Classical (~digital) vs Neuromorphic Computing (~analog)

Summary

Physics Motivation

To study the electroweak symmetry breaking and search for new physics we need real time tracking

Data reduction at the source with ML on chip is an exciting R&D avenue to achieve real time tracking

Track Classification in 28nm

Developed a classification network to predict track momentum and taped it out in 28nm CMOS. First steps toward creating the new technology

Anthony Badea (UChicago) — Future Smart Detectors

Real Time Tracking Challenges

Thank you from our team

Fermi National Accelerator Laboratory: Abhijith Gandrakota, Benjamin Parpillon, Chinar Syal, Douglas Berry, Gauri Pradhan, Giuseppe Di Guglielmo, James Hirschauer, Jennet Dickinson, Lindsey Gray, Nhan Tran, Ron Lipton, Farah Fahim (lead) Johns Hopkins University: Dahai Wen, Morris Swartz, Petar Maksimovic Northwestern University: Manuel Blanco Valentin Oak Ridge National Laboratory: Aaron Young, Shruti R. Kulkarni University of Chicago: Karri DiPetrillo, Anthony Badea, Carissa Kumar, Emily Pan, Rachel Kovach-Fuentes, Aidan Nicholas, Eliza Howard, Eric You University of Illinois Chicago: Corrinne Mills, Danush Shekar, Jieun Yoo, Mohammad Abrar Wadud University of Illinois Urbana-Champaign: Mark S. Neubauer, David Jiang University of Kansas: Alice Bean Purdue University: Mia Liu, Arghya Das

Jieun

Yoo

Danush Shekar

Rachel Fuentes

Eliza

Howard

Carissa

Kumar

Aidan Nicholas

David Jiang

Anthony Badea (UChicago) — Future Smart Detectors

smartpixels

Fermilab (2) Schmidt Sciences

Arghya Das

Shiqi Kuang

UIC

BACKUP

Anthony Badea

Anthony Badea

Physics Scenarios

SM+s Scenario

Mixed Higgs-scalar scenarios lead to many soft b-quarks (like di-Higgs). Large QCD background overwhelms data rate, so swap cross section for leptonic trigger from associated W/Z. This makes analysis possible but limits sensitivity.

Displaced Track DM Scenario

Anthony Badea (UChicago) — Future Smart Detectors

dark matter mass

Detector Considerations

Anthony Badea

CMS/ATLAS Trigger Schemes

Anthony Badea (UChicago) — Future Smart Detectors

2209.15519, CERN-LHCC-2017-020

Tracking

B-meson decay length

 $\langle L \rangle \sim 100 \text{ mm x}$ TeV

Anthony Badea (UChicago) — Future Smart Detectors

ATLAS Phase 2

Classification Network on 28nm v1 chip

Anthony Badea

Training Data

Neural Network Design

Chip Photos

Chip Tape-out Details

Technical:

- Analog island with amplifier and 2-bit ADC
- Digital logic surrounding with DNN inside (translated with CatapultAI)
- 28nm CMOS process from TSMC with Muse

Logistics:

- Received chip back last month June '24
- ~\$14k/mm², 1.5 mm² tape-out ~ \$30k

Test Bench

Anthony Badea (UChicago) — Future Smart Detectors

Test bench that tests the core functionality of the chip. Reusable for future tape-outs. Builds upon Spacely (Adam Quinn)

