ICHEP 2024 | PRAGUE

Time structure characterization of (UHDPP) beams from proton and electron accelerators using Timepix3

<u>Katerina Sykorova¹</u>, Cristina Oancea¹, Lukas Marek¹, Jiri Pivec¹, Carlos Granja¹, Alexandra Bourgouin^{2,3}, Jaroslav Solc⁴, Felix Riemer⁵, Elisabeth Bodenstein^{6,7}, Felix Horst^{6,7}, Joerg Pawelke^{6,7}, Jan Jakubek¹ 1 Advacam, Czech Republic 2 Physikalisch-Technische Bundesanstalt (PTB), Germany 3 National Research Council (NRC), Canada 4 Czech Metrology Institute (CMI), Czech Republic 5 Deutsches Elektronen-Synchrotron (DESY), Germany 6 National Center for Radiation Research in Oncology (OncoRay), Germany 7 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany

VACAM

Outline

A D V A C A M Imaging the Unseen

- Motivation and Introduction
- AdvaPIX Timepix3 detectors
- Time structure characterization of UHDPP (FLASH radiotherapeutic) beams
 - Proton beam
 - Electron beam
- Conclusions

FLASH radiotherapy

∧ D V A C A M Imaging the Unseen

FLASH radiotherapy has recently gained significant momentum due to its potential benefits, which include:

- Reduced damage to surrounding healthy tissues
- Shorter treatment times
- Improved patient comfort and outcomes

Ultra-high dose-per-pulse (UHDPP) beams

- Delivery times typically below 100 ms
- Delivered dose above 1.6 Gy per one beam pulse or dose rate above 40 Gy/s

Monitoring of UHDPP beams in FLASH radiotherapy

UHDPP beam monitoring for FLASH RT

UHDPP beam monitoring including time structure characterization (not only) in FLASH radiotherapy is frequently faced with several difficulties:

- Beam monitors intercept the primary beam
- Saturation effects due to delivering ultra-high dose-per-pulses rates
- Short irradiation times, frequently within the range of few µs
- High frequency beam modulation

DVACAM

UHDPP beam monitoring for FLASH RT

UHDPP beam monitoring including time structure characterization (not only) in FLASH radiotherapy is frequently faced with several difficulties:

- Beam monitors intercept the primary beam
- Saturation effects due to delivering ultra-high dose-per-pulses rates
- Short irradiation times, frequently within the range of few µs
- High frequency beam modulation

Time resolution below µs

DVACAM

Out-of-field measurement

UHDPP beam monitoring for FLASH RT

UHDPP beam monitoring including time structure characterization (not only) in FLASH radiotherapy is frequently faced with several difficulties:

- Beam monitors intercept the primary beam
- Saturation effects due to delivering ultra-high dose-per-pulses rates
- Short irradiation times, frequently within the range of few µs
- High frequency beam modulation

Timepix 3

- 1.6 ns time resolution
- Saturation avoided out-of-field
- Secondary radiation field decomposition

DVACAM

Out-of-field measurement

Time resolution below us

AdvaPIX Timepix3

∧ D V A C A M Imaging the Unseen

Timepix 3 chip:

- 256 x 256 pixels, 55 µm pixel pitch
- Sensitive area 14 x 14 mm²
- Simultaneous measurement of TOA and TOT
- Fast TOA with 1.56 ns precision
- Data driven readout

Charged particle

AdvaPIX TPX3 detector:

- Sensitive material: Si, CdTe, ...
- Sensor thickness: 100 1500 μm
- Readout speed 40 Mhits/s per sensor area
- Energy resolution ~ 1 keV @ 60 keV, ~ 3 keV @ 122 keV
- Minimal detectable energy ~ 3 keV for photons

UHDPP proton beam characterization

DVACAM Imaging the Unseen

University Proton Therapy Dresden, Germany

Primary beam setup:

- Stationary proton pencil beam
- Generated by isochronous cyclotron
- 220 MeV primary beam energy
- Conventional dose rates or short UHDR beam pulses
- Varying pulse lengths and beam current

DVACAM Imaging the Unseen

University Proton Therapy Dresden, Germany

AdvaPIX TPX3:

- Si, 1000 µm
- TOT and TOA measurement
- Data-driven mode

Measure delivered dose rate, irradiation time per pulse (pulse length), pulse temporal structure.

DVACAM Imaging the Unseen

University Proton Therapy Dresden, Germany

Delivered pulse length [ms]	Delivered current [nA]	Measured # of pulses by TPX3	Measured pulse length [ms]	Measured dose rate [uGy/s]		Conventi
2000	0.18	1	2020(20)	0.278(3)	1	ona
1000	0.21	1	1000(10)	0.345(3)		al th
800	0.28	10	806(8)	0.43(2)		iera
300	0.57	1	300(3)	0.841(8)		ру
40	4.00	10	40.2(4)	6.2(2)		
20	8.06	10	20.2(2)	12.5(5)		민
4	41.80	4	3.99(4)	65(2)		sh
4	20.73	7	3.98(4)	37(2)		ther
3	67.22	10	3.00(3)	104(3)		apy
1	39.13	14	0.98(1)	61(5)	•	

Frequency of delivered pulses was approximately 1 Hz

DVACAM Imaging the Unseen

University Proton Therapy Dresden, Germany

Individual pulses are clearly distinguished.

Delivered pulse length [ms]	Delivered current [nA]	Measured # of pulses by TPX3	Measured pulse length [ms]	Measured dose rate [uGy/s]
2000	0.18	1	2020(20)	0.278(3)
1000	0.21	1	1000(10)	0.345(3)
800	0.28	10	806(8)	0.43(2)
300	0.57	1	300(3)	0.841(8)
40	4.00	10	40.2(4)	6.2(2)
20	8.06	10	20.2(2)	12.5(5)
4	41.80	4	3.99(4)	65(2)
4	20.73	7	3.98(4)	37(2)
3	67.22	10	3.00(3)	104(3)
1	39.13	14	0.98(1)	61(5)

Frequency of delivered pulses was approximately 1 Hz

| 9

Conventional therapy

Flash therapy

Pulse length – proton UHDPP

Flash radiotherapy is characterized by having very short irradiation times. Out-of-field measurement was used to determine pulse lengths. Start and end of pulse were determined by signal crossing fixed threshold.

DVACAM

Pulse structure – proton UHDPP

∧ D V A C A M Imaging the Unseen

The average time structure of the pulses was investigated for the first time.

Pulse structure – proton UHDPP

∧ D V A C A M Imaging the Unseen

The average time structure of the pulses was investigated for the first time.

Bin size: 50 µs

Bin size: 10 ms

Secondary radiation – proton UHDPP

∧ DVACAM Imaging the Unseen

Radiation field can be decomposed into two components – both components contribute constantly throughout irradiation.

Dose rate – proton UHDPP

DVACAM Imaging the Unseen

UHDPP electron beam characterization

DVACAM Imaging the Unseen

Electron accelerator facility in the Physikalisch-Technische Bundesanstalt (PTB), Germany

PIB

Primary beam setup:

- Ultra-high dose-per-pulse (UHDPP) electron beam
- Linear electron accelerator
- 20 MeV primary beam energy
- 0.1 mm Cu exit window
- Pulse lengths 1.18 2.88 μs
- Two LINAC configurations with estimated instantaneous delivered dose rate 0.81 Gy·µs⁻¹ and 2.62 Gy·µs⁻¹

Electron accelerator facility in the Physikalisch-Technische Bundesanstalt (PTB), Germany

AdvaPIX TPX3:

- Si, 1000 µm
- TOT and TOA measurement
- Data-driven mode

Measure delivered dose rate, irradiation time per pulse (pulse length), pulse time structure.

DVACAM

∧ D V A C A M Imaging the Unseen

Electron accelerator facility in the Physikalisch-Technische Bundesanstalt (PTB), Germany

			LINAC configuration	
	Campaign	Pulse length	(estimated dose rate	# of delivered
	#	[µs]	$[Gy \cdot \mu s^{-1}])$	pulses
\sim	1	1.18	2.62	21
<u> </u>	2	1.52	2.62	21
ati	3	1.82	2.62	20
ng	4	2.10	2.62	21
ij	5	2.36	2.62	20
ပို	6	2.64	2.62	20
Ŭ,	7	2.88	2.62	20
0	8	1.18	0.81	21
5	9	1.52	0.81	22
ati	10	1.82	0.81	21
ü	11	2.10	0.81	21
Jfig	12	2.36	0.81	21
کر ا	13	2.64	0.81	21
	14	2.88	0.81	20

Frequency of delivered pulses was fixed to 5 Hz

5.5

∧ DVACAM Imaging the Unseen

Electron accelerator facility in the Physikalisch-Technische Bundesanstalt (PTB), Germany

Pulses with ~ 1 μ s length were clearly distinguished. Correct frequency of 5 Hz was recovered for all measurement campaigns.

60

t [s]

100

80

One pulse (1.6 ns time binning)

Pulse frequency of 5 Hz was measured even for longer acquisition times

			LINAC configuration	
	Campaign	Pulse length	(estimated dose rate	# of delivered
•	#	[µs]	$[Gy \cdot \mu s^{-1}])$	pulses
N [1	1.18	2.62	21
<u> </u>	2	1.52	2.62	21
ati	3	1.82	2.62	20
ng	4	2.10	2.62	21
Ĵ	5	2.36	2.62	20
ပို	6	2.64	2.62	20
~	7	2.88	2.62	20
0	8	1.18	0.81	21
Б	9	1.52	0.81	22
atio	10	1.82	0.81	21
n	11	2.10	0.81	21
fig	12	2.36	0.81	21
<u>ک</u>	13	2.64	0.81	21
	14	2.88	0.81	20

Frequency of delivered pulses was fixed to 5 Hz

Pulse length – electron UHDPP

∧ D V A C A M Imaging the Unseen

Start and end of pulse are determined by signal crossing 50% of the mean signal intensity - consistent with the pulse length definition used in ICT measurements.

Pulse structure – electron UHDPP

Despite variations in pulse length, the average time structure measured by out-of-field positioned detector remains remarkably consistent.

LINAC configuration 2 Pulse lenght measured by ICT 1.18 us 🗕 1.18 μs 1.52 us 🔶 1.52 μs 80 🛏 1.82 μs 1.82 us LINAC configuration 0 – 2.10 μs 200 2.1 us - 1.18 us 🛏 2.36 μs — 1.52 us 2.36 us — 1.82 us 🗕 2.64 μs — 2.1 us 2.64 us 🗕 2.88 μs 60 ---- 2.36 us 2.88 us - 2.64 us 150 ---- 2.88 us Counts [-] 100 N 40 20 50 2.5 -0.5 0.0 0.5 1.0 1.5 2.0 3.0 3.5 4.0 t-t[us] 0 -0.50.5 3.5 0.0 1.0 1.5 2.0 2.5 3.0 4.0 1.0 1.5 2.0 2.5 0.0 0.5 3.0 t -Ī [us] Time [µs]

DVACAM

Dose rate – electron UHDPP

∧ DVACAM Imaging the Unseen

For a given experimental configuration, two (three) dose rate measurements are sufficient to establish the relationship between ICTs and measured dose rate.

Conclusions

∧ D V A C A M Imaging the Unseen

AdvaPIX Timepix 3 positioned out-of-field proved to be a powerful detector for beam monitoring in (FLASH) radiotherapy as demonstrated for electron and proton beams.

- Individual beam pulses are clearly identified and the correct pulse count and pulse frequency are found.
- Pulse length is determined from secondary radiation measurements.
- Time beam structure is recognized.
- Linear relationship between delivered and measured dose rate was found Timepix3 out-of-field dose measurement can be used to determine delivered dose once the linear relationship is established with few initial measurements.