Development of a vertex detector prototype for the CEPC Zhijun Liang

(On behalf of the CEPC physics and detector group)

Institute of High energy physics, CAS 42nd International Conference on High Energy Physics Prague, July 17–24, 2024

CEPC physics program

An extremely versatile machine with a broad spectrum of physics opportunities

 \rightarrow Far beyond a Higgs factory

Operation mode			ZH	Z	W+M-	tī
\sqrt{s} [GeV]			~240	~91.2	~160	~360
Run time [years]			10	2	1	5
CDR (30 MW)		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
	Run Time [years]		10	2	1	~5
	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
Latest	50 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	20	96	7	1
		Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

- Huge measurement potential for precision tests of SM: Higgs, electroweak physics, flavor physics, QCD/Top
- Searching for exotic or rare decays of H,
 Z, B and τ, and new physics
- ***** CEPC community joined ECFA Phy focus

Both 50 MW and $t\bar{t}$ modes are currently considered as CEPC upgrades.

CEPC Detector Conceptual Designs

Overview of CEPC vertex detector prototype R & D

Silicon Pixel Chips for Vertex Detector

JadePix-3 Pixel size ~ $16 \times 23 \ \mu m^2$

Tower-Jazz 180nm CiS process Resolution 5 microns, 53mW/cm²

MOST 1

Goal: $\sigma(IP) \sim 5 \mu m$ for high P track

CDR design specifications

- Single point resolution ~ 3µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 5 series: JadePix, TaichuPix, CPV, Arcadia, COFFEE

TaichuPix-3, FS 2.5x1.5 cm² 25×25 μm² pixel size

CPV4 (SOI-3D), 64×64 array ~21×17 μm² pixel size

Develop **COFFEE** for a CEPC tracker using SMIC 55nm HV-CMOS process

Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

MOST 2

Full-size TaichuPix3 (engineering run)

*****Developed the first full-size CMOS pixel sensor

► Full size 1024×512 Pixel array, Chip Size: 15.9×25.7mm

- $25\mu m \times 25\mu m$ pixel size \rightarrow high spatial resolution
- Process: Towerjazz 180nm CIS process
- **Fast digital readout to cope with ZH and Z runs (40MHz clock)**

An example of wafer test resul

Jadepix3/TaichuPix3 beam test @ DESY

Collaboration with CNRS and IFAE in Jadepix/TaichuPix R & D

TaichuPix3 vertex detector prototype

New pickup tools

Ladder on wire bonding machine

Dummy ladder glue automatic dispensing using gantry

Dummy Ladder on holder

The first vertex detector (prototype) ever built in China

adder support tools

TaichuPix3 vertex detector prototype beam test @ DESY

11/09/2023

Air cooling in vertex detector prototype

*Dedicated air cooling channel designed in prototype.

- ▶ Measured Power Dissipation of Taichu chip: ~60 mW/cm² (17.5 MHz clock in testbeam)
- ▶ Before (after) turning on the cooling, chip temperature 41 °C (25 °C)
 - In good agreement to our cooling simulation
 - No visible vibration effect in spatial resolution when turning on the fan

TaichuPix3 vertex detector prototype beam test @ DESY

DUTA DU beam direction

Hit maps of multiple layers of vertex detector

11

From detector prototype to reference TDR

Reference detector TDR for CEPC under preparation, to be completed by the mid-2025 for the proposal of China's 15th 5-year plan.

***** Vertex detector Technology selection

- ► Baseline: based on curved MAPS (Inspired by ALICE ITS3 design)
- Alternative: Ladder design based on MAPS (prototype like design)

* Challenges

- Closer to beam pipe (radius~11mm, High background rate (at Z pole, 40MHz, 1Gbps per chip)
- ▶ Detector Cooling ($<=40 \text{ mW/cm}^2$) with air cooling
- ► Radiation level (~1Mrad per year in average)
- ► Low material budget (~0.05% X/X0 per layer)
- ► Spatial Resolution (3-5um)

Vertex technologies: alternative

*****Alternative: CMOS chip with long ladder layout

- ► Long ladder design to cover $\cos \theta \le 0.991$ (no endcap disk)
- ► 3 double-side layer with ladders
- ► Aim to based on 65nm /55nm technology(<=40 mW/cm²)

				10		
			11	10		
		1-	48	94		
			2	20		
					4	
E						
	L					
				·		
		Г				
					and the second se	
_						
	and the second sec					

Ladder support size				
layer	Size .mm (W x H x L mm)			
inner	17.4x1.7x260			
middle	17.4x2.5x486			
outer	17.4x3.2 x749			

Material budget at $\Phi = 33 \text{ degree}_{\text{Material Budget }(X_0)}$

Vertex technologies: Cable and service

*Limited space in MDI region for cable and service

► All fast signal transferred into optical fiber in service region

Vertex baseline for CEPC reference TDR: curved MAPS

*****Baseline: curved MAPS, Inspired by ALICE ITS3 design

Advantage: 3~5 times smaller material budget compared to alternative (ladder options)

*Challenges

- ► CEPC b-layer radius (radius=11mm) smaller compared with ALICE ITS3 (radius=18mm)
- ► Feasibility study: Mechanical prototype with dummy wafer can curved to radius ~12mm

Summary

- ✤ 1st full-size Prototype for CEPC vertex detector developed
- Reference detector TDR under preparation, to be completed by the mid-2025 for the proposal of China's 15th 5-year plan.
- It is important to expand international collaboration and explore synergies with other international projects (especially framework of DRD7 (electronics) and DRD8 (mechanics and integration) more than DRD3 (solid state detectors).

CEPC vertex conceptional design (2016)

CEPC vertex prototype (2023)

TaichuPix design

* Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- ► Fast-readout digital, with masking & testing config. logic
- Column-drain readout for pixel matrix
 - Priority based data-driven readout
 - Readout time: 50-100 ns for each pixel

✤ 2-level FIFO architecture

- ▶ L1 FIFO: de-randomize the injecting charge
- L2 FIFO: match the in/out data rate
- between core and interface
- Trigger-less & Trigger mode compatible
 - ► Trigger-less: 3.84 Gbps data interface
 - Trigger: data coincidence by time stamp only matched event will be readout

✤ Features standalone operation

• On-chip bias generation, LDO, slow control, etc

scenario B: three of double-layers

R [mm]

scenario A: uniform layout

Highlights of CEPC machine detector interface (MDI)

Extended

Beampip

Δ

Racetra

20mm -

35mm

Inner Diameter at '

07

Inner Diameter at X

The design based on Accelerator TDR has been done. The background simulation is performing.

0.3

Extended

Beampipe

AI

Inner Diameter at Y Axis: 20mm

We are also checking the elliptical cross-section

ner Diameter at X Axis: 20-35mm

0.5

Racetrack Cone

0.4

Z(m)

The experiment at BEPCII has been done several times to validate the code.

The collaboration on beam induced background study between different groups has been formed.

CMOS MAPS sensors development

All developed with TowerJazz CIS 180 nm process

Design finalized, to be taped off JadePix4

		resolution	time	power			
	JadePix-4	<5 µm	~1 µs	< 100 mW/cm ²			
	JadePix-3	<3 µm	<100 µs	< 100 mW/cm ²			
an a	Optimized for fast readout						

Integration

Full-size Taichupix

Chip size: 5 mm × 5 mm Pixel size: 25 µm × 25 µm

Taichupix2

14.8mm

CONT

A MILLY'S

1024*512 pixel array, FE-I3-like

High speed, deadtime~50ns@40MHz, time stamp precision 25/50ns

Full-size chips produced and tested

Vertex detector sensor R&D timeline

The 4th Detector Concept

Backup: Vertex alternative: expected performance

