Development of CMOS-based tracker for CEPC

Yiming Li (IHEP, CAS) On behalf of the CEPC silicon tracker team

ICHEP 2024 PRAGUE

ichep2024.org

42nd International Conference on High Energy Physics

18-24 July 2024 Prague Czech Republic

CEPC

- Circular Electron-Positron Collider, as a Higgs / Z / W factory, for high-precision Higgs, EW, flavour physics, and for probe of new physics beyond Standard Model
 - Proposed by Chinese HEP community after Higgs discovery
 - CDR published in 2018
 - Accelerator TDR released in end 2023
 - Reference detector TDR under preparation

Switchable operation for H/W/Z

Particle	E _{c.m.} (GeV)	$L \text{ per IP} (10^{34} \text{ cm}^{-2} \text{s}^{-1})$	Integrated L per year (ab ⁻¹ , 2 IPs)	Years	Total Integrated L $(ab^{-1}, 2 \text{ IPs})$	Total no. of events
Н	240	5	1.3	10	13	2.6×10^{6}
Ζ	91	115*	30	2	60	2.5×10^{12}
W	160	16	4,2	1	4.2	1.3×10^{8}
$t\bar{t}^{**}$	360	0.5	0.13	5	0.65	$0.4 imes 10^6$

* Detector solenoid field is 2 Tesla during Z operation. ** $t\bar{t}$ operation is optional.

> Operational plan @ 30MW (upgradable to 50MW)

Haijun Yang's talk : Status of the CEPC Project

CEPC silicon tracker

- Large area silicon tracker: technical challenges
 - ~70 140 m² depending on detector concept

R [mm]

- ~10 um spatial resolution imposed by requirement on momentum resolution
- A few ns timing resolution to tag 23ns bunches at Z-pole

SOT

• Low material budge

SET

Baseline concept (CDR)

Moderate power consumption

2400 Z [mm]

SIT

HVCMOS : a promising technology

- High-Voltage CMOS
 - Full depletion possible due to large electrode
 - Intrinsically radiation hard
 - Fast charge collection
 - Relatively larger capacitance: noise, power
 - Based on commercially available process without modification → cost-effective

- ATLASPix3 features
 - TSI 180nm HVCMOS on 200 Ωcm substrate
 - Pixel size $50 \times 150 \ \mu m^2$
 - 132 columns × 372 rows
 - $20.2 \times 21 \text{ mm}^2$ reticle size
 - Each pixel has 7-bit TOT + 10-bit timestamp
 - Continuous / triggered readout with 8b10b / 64b66b coding
 - Power consumption ~160 mW/cm².

Development based on ATLASPix3

- Extensive characterization for ATLASPix3, including two test beam campaigns
- 4-chip readout unit (Quad module) developed

Efficiency > 99%

20 Jul 2024

Resolution ~11um

Riccardo Zanzottera's talk : The ATLASPIX3 CMOS pixel sensor performance Attilio Andreazza's talk : The IDEA silicon tracker

 10^{4}

Towards smaller feature size

For better performance

- Higher circuit density
- More functionality in the same area
- Less power consumption
- For higher reliability

facor) has started

- R&D phase of HEP experiments are usually long (comparing to commercial world)
- Will the process available for mass-production?

Development for 65nm CMOS (MAPS of small fill-

• Key R&D theme in ECFA detector roadmap

• Example of TSI-180nm process

P. Moreira @ CEPC workshop, Oct 2023

Development in small feature size HVCMOS

- HLMC 55nm HVCMOS process
 - Cancelled MPW plan in 2022
- SMIC 55nm Low-Leakage process
 - Not HV, yet with a similar deep n-well structure
 - MPW submitted in Oct 2022 in normal wafer
 - COFFEE1 received in Apr 2023
- SMIC 55nm HVCMOS process
 - HVCMOS process, with $1k\Omega$ $\cdot cm$ wafer
 - MPW submitted in Aug 2023
 - COFFEE2 received in Dec 2023

NB: All dimensions mentioned in 55nm process always has a scale factor of 0.9. As it is scaled down from 65nm masks

COFFEE1: MPW in LL process

- MPW submitted in Oct 2022 with SMIC
 55nm Low Leakage process
 - NB: not an HV process! Yet it has similar deep N well separating the transistors and the sensor part
 - $3 \times 2 \text{ mm}^2$ in area
 - Low resistivity wafer
- Variation of passive diode arrays
 - Pixel size: $25 \times 150 \ \mu m^2$ or $50 \times 150 \ \mu m^2$
 - With/w.o. p-stop
 - Space between pixels: 5/ 10/ 15 um
- Simple amplifiers added

Current reference + bias

COFFEE1 tests

- IV curves show breakdown voltage ~ -8 V
 - Expected for low-resistance wafer
- CV curves measured for 1 pixel or 10 pixels connected
 - With offset subtracted the capacitance of a single pixel of $25 \times 150 \ \mu m^2$ is $150 \sim 200 \ \text{fF}$
- Small yet clear signal response to laser
 - Corresponding to charge of ~2400 e-

ICHEP 2024 | Yiming Li | Development of CMOS-based tracker for CEPC

COFFEE2: MPW in HVCMOS process

MPW with SMIC HV 55nm

- High-res wafer of 2k or $1k \Omega cm$ available
- Real validation of the sensor
- 4mm * 3mm in area
- Passive arrays similar as COFFEE1
- Two pixel arrays with in-pixel amplifier and more digital design
- Submitted in Aug 2023
- Received in Dec 2023

Cross-section of pixel strucure

COFFEE2 floorplan

COFFEE2 photo

- 32 × 20 pixel matrix with various diodes and in-pixel amplifier or discriminator designs for process validation
 - $40 \times 80 \ \mu m^2$
 - 5/10/15um gap btw pixels
 - With/ w.o. p-stops
 - 2 version in-pixel electronics
- 2. passive diode arrays, each has 3×4 pixels of size $40 \times 80 \ \mu m^2$ for study on sensing diode and charge sharing

* Pixel size choice: similar area as $25 \times 150 \ \mu m^2$ but less elongated

IHEP, Shandong Univ., Zhejiang Univ.

3. 26 × 26 pixel matrix of 25 × 25 μm^2 pixels with digital readout periphery for novel electronics structure study

KIT, IHEP

Design and test of in-pixel circuit

- Three types of in-pixel electronics
 - 1 analog readout only
 - 2 CSA + NMOS comparator -> ADC in periphery
 - 3 CSA + CMOS comparator, digital output
 - A pixel is read out by row/column selector

ICHEP 2024 | Yiming Li | Development of CMOS-based tracker for CEPC

First tests of COFFEE2 sensors

- Breakdown voltage up to 70V
- Full depletion not yet reached at breakdown
 - Confirmed by simulation
 - Due to p-well right next to the edge of deep n-well
- Capacitance (with offset subtracted) scales with sensor area

Future R&D using 55nm process

- Thorough characterization of COFFEE2
 - Test board ready, firmware being tuned
 - Sensor irradiated up to ~ $1 \times 10^{15} n_{eq}/cm^2$
- MPW to implement small pixel array, with more in-pixel functions (eg. Timestamping)
 - Earliest MPW opportunity in Oct 2024
 - Eventually a prototype chip with larger array in 3-5 years

Proton bean

urrent transformer monitor

NIM A1042 (2022) 167431

活化片 ***** 铜箔样品

SiC样品 -

2cm*2cm

COFFEE2样品

Mechanical design

- Design, simulation and prototyping for 2nd SIT layer in CDR baseline
- Dedicated mechanical design ongoing for rdTDR

ICHEP 2024 | Yiming Li | Development of CMOS-based tracker for CEPC

Summary

- To tackle the technical challenges of CEPC silicon tracker, a lot of R&D work ongoing
- HVCMOS is a most promising technology under study
 - Prototyping has been going on with chip in 180nm process
 - Development for 55nm HVCMOS started with 2 MPWs, first results promising
 - Module and mechanical design are progressing

Thank you for your attention

Your participation is welcome!