The IDEA Silicon Tracker

42nd International Conference on High Energy Physics Prague, 20 July 2024

Attilio Andreazza - Università di Milano and INFN

For the IDEA Detector Concept Community

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Outline

- Requirement for operation at future Higgs factories
- The IDEA Detector concept
- Silicon tracking in IDEA:
 - Technologies
 - Inner Vertex Detector
 - Outer Vertex Detector
 - Silicon Wrapper
- Conclusions and outlook

Physics requirement at Higgs Factories

- Rich physics program at future Higgs Factories
 - ZH, but also tera-Z, WW and tt threshold
- Physics performance mostly determined by the Higgs physics program
- Operating condition (data rate, background) from the high-luminosity at the Z pole

• Impact parameter resolution

$$\sigma_d < 3 \ \mu m \oplus rac{15 \ \mu m \cdot GeV}{p \sin^{3/2} heta}$$

- Momentum resolution $\frac{\sigma_p}{p} < 2 \cdot 10^{-5} \text{GeV}^{-1} p \oplus \frac{b}{\sin \theta}$
- Hit rate near to the beam-pipe
 250 MHz/cm² (background dominated)
- Bunch spacing: 20 ns
- Z production rate O(10 kHz)

Prague, 20 July 2024

The IDEA Detector Concept

- Central tracking device:
 - light Drift CHamber
- Silicon detectors for precision measurements
 - inner vertex detector
 - outer vertex detector
 - silicon wrapper/TOF
 - Thin solenoid with 2T field (according to MDI limits)
- Dual readout calorimeter

 supplemented by a pre-shower

A. Loeschcke Centeno's and R. Santoro's talks this afternoon

• Muon chambers in the solenoid

return yoke

F.M. Melendis's talk yesterday

Prague, 20 July 2024

Si Detector Technologies

- Focus on **depleted monolithic CMOS detectors**
 - High-Voltage/High-Resistivity CMOS processes commercially available
 - CMOS Foundries are able to produce large volume of detectors at a convenient price
 - Depleted region provide fast rising and "high-amplitude" signals
 - No need of the complex and costly interconnection technique used in hybrid detectors
- Two baseline technologies presented in this talk:
 - ARCADIA INFN/LFoundry driven development, collaborations with PSI
 - fully depleted sensors, with high granularity and low power consumption for the Inner Vertex Detector
 - **ATLASPIX3** KIT, China, INFN, UK collaboration
 - full reticle size detector, implementing most features needed for deployment in the Outer Vertex
 Detector and Si Wrapper
- Options under consideration
 - Curved layout, ALICE ITS3 inspired, for the Inner Vertex Detector
 - Resistive Silicon Detectors, with tens of ps time resolution are considered as an opportunity for the Silicon
 Wrapper (showing results from Torino, Trento, Perugia and FBK collaboration)

INNER VERTEX DETECTOR

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

ARCADIA

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

UNIVERSITÀ

<u>degli st</u>udi Di milano

Fully Depleted Monolithic Active Pixel CMOS sensor technology platform allowing for:

- Active sensor thickness in the range 50 μm to 500 μm;
- Operation in **full depletion** with fast charge collection by drift
- Small collecting electrode for optimal signal-to-noise ratio;
- Scalable readout architecture with ultra-low power capability O(10 mW/cm²);
- Compatibility with standard CMOS fabrication processes: concept study with small-scale test structure (SEED), technology demonstration with large area sensors (ARCADIA)
- Technology: LF11is 110nm CMOS node (quad-well, both PMOS and NMOS), high-resistivity bulk
- Custom patterned backside, patented process developed in collaboration with LFoundry

ARCADIA: MD3 demonstrator

- Demonstrator layout:
 - Top Padframe Auxiliary supply, IR Drop Measure
 - Matrix
 - 512x512 pixels, Double Column arrangement
 - 25x25 μ m² pixels
 - Clockless
 - End of Sector (x16) Reads and Configures 512x32 pixels
 - Sector Biasing (x16) Generates I/V biases for 512x32 pixels
 - Periphery
 - SPI, Configuration, 8b10b enc, Serializers
 - Triggerless data-driven readout
 - Event rate up to 100 MHz/cm²
 - High-rate operation (16 Tx): 17-30 mW/cm²
 - Low-power operation (1 Tx): 10 mW/cm²
 - Bottom Padframe Stacked Power and Signal pads

Sensitive area 12.8 × 12.8 mm²

- Cosmic ray data taking: 1 week
- 3-plane MD3 installed on a black box
- Threshold 290 e-, MPV = 4 pixels
- More than 90% of clusters with less than 6 fired pixels
- Preliminary results on residuals show a standard deviation of 12-14 µm (multiple scattering...)
- Testbeam just completed at Fermilab

Inner vertex layout

- Module based on ARCADIA MD3 layout
- 3 barrel layers
 - 13.7, 23.7, 34/35.6 mm radii
- Sensor loaded on thin carboncarbon support and flex PCB for powering and readout
 - Alice/Belle2 like stave approach
- Light truss structure to provide mechanical rigidity to the stave

- Total detector weight 285 g
- 0.25% X₀ thickness per layer
 - Chips ~0.05% X_0 , readout and power bus ~0.06% X_0
- Total power consumption 121 W
- Air cooling is possible
- Mockup construction and testing of the concept ongoing (LNF, Pisa, Perugia)

The IDEA Silicon Tracker

Prague, 20 July 2024

Alternative layout (stitched sensors)

- Curved layout inspired by ALICE ITS3 developments
 - adapted to the FCCee interaction region geometry and tracking coverage
 - 20.5x21.7 mm² pixel-matrix cell
 - 4 layers

UNIVERSITÀ

DI MILANO

- Highest radii layers split in two sections due to wafer size and staggered to recover hermeticity
- drastic improvement in material budget

Prague, 20 July 2024

OUTER VERTEX DETECTOR

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

ATLASPIX3 Detector

• ATLASPIX3 general features

- TSI 180 nm HVCMOS technology
- full-reticle size **20×21 mm²** monolithic pixel sensor
- \circ 200 Ωcm substrate (other substrates up to 2 kΩcm also possible)
- 132 columns of 372 pixels
- **pixel size 50×150 \mum²** (25×150 μ m² on recent prototypes)
- breakdown voltage ~-60 V
- up to **1.28 Gbps downlink**
- 25 ns timestamping
- analog pixel matrix, digital processing in periphery
- Both triggerless and triggered readout modes:
 - two End of Column buffers
 - 372 hit buffers for triggerless readout
 - 80 trigger buffers for triggered readout

Prague, 20 July 2024

Serial Powering Chain

Distribution of power and data signals along the local supports

- **serial powering** to reduce dissipation on the distribution lines
- **minimize** the number of connections

Read-out units are:

- **multi-chip modules** (example 2x2 quad modules)
- (or large stitched detectors)

Minimal I/O connection on chip requires:

- Serial powering chain: all biases generated internally by shunt-LDO regulators
- chip-to-chip data transmissions: local data aggregation on module
- clock data recovery

Reducing material by developing PCB with Al as conductor

• on going design of PCBs to prototype a serial power chain

The IDEA Silicon Tracker

not available

on ATLASPIX3

modules

Outer Vertex Layout

- 2 barrel layers
 - 13 cm and 31.5 cm radii
 - covering $|\cos \theta| < 0.77$
- 2x3 Disks
 - $0.77 < |\cos \theta| < 0.99$
- Light stave truss
- Assuming 100 mW/cm², total power consumption 1742 W
- Thermal plate with light Kapton pipes for liquid cooling
- Module PCB provides important contribution to material

Prague, 20 July 2024

SILICON WRAPPER

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

The IDEA Concept: Si Wrapper

- Precision silicon layer around the central tracker
 - improve momentum resolution
 - extend tracking coverage in the forward/backward region
 by providing an additional point to particles with few measurements in the drift chamber
 - precise and stable ruler for acceptance definition
 - it may provide TOF measurement
- Covered area ~100 m²
 - important impact on services
 - technology suitable for large size production

- Re-use the ATLASPIX3 quadmodule concept
- No detailed layout of the mechanical structure yet
- Using multi-module tiles to cover the whole acceptance area

Prague, 20 July 2024

TOF measurement in Si Wrapper

• Particle Identification is essential for many physics measurements

INIVERSITÀ

DI MILANC

- Needed on a wide momentum range
 - $B_s^0 \rightarrow D_s K$ has K up to 30 GeV/c
 - K for flavour tagging in $b \rightarrow c \rightarrow s$ decay chains are pretty soft
 - useful in tau physics for Vus measurements in $\tau \rightarrow K \nu$
- dN/dx measurements in Drift Chamber provides 3σ separation up to 30 GeV/c
- Confusion region about 1 GeV/c can be covered by TOF measurement with resolution <100 ps

Can it be implemented in the Si Wrapper without compromising the spatial resolution?

Si-Wrapper: alternative RSD option

• LGAD detector with continuous gain layer

UNIVERSITÀ DEGLI STUDI DI MILANO

- Charge collection through resistive n-layer
- Readout by induction on **AC coupled pads**
- Fully active detector
 - avoids inefficient regions due to the insulation between pixels needed in LGAD sensors
- Charge sharing defined by the relative impedance of the path between the charge deposition and readout electrodes
 - Sharing is deterministic (in low pitch pixel detectors sharing is dominated by Landau fluctutations)
 - Timing resolution approximatively independent from pixel pitch
 - Position resolution ~5% of the readout pitch: more space in readout pixel cell to implement precision TDC

Summary and outlook

- The IDEA tracker layout poses different challenges for the different silicon trackers:
 - Extremely high resolution and low-mass are needed for the vertex detectors
 - System issues are the focus topics for the large area detectors
 - Depleted Monolithic CMOS pixel detectors are a cost-effective and high-performance solution
- **ARCADIA** (LF 110 nm) provides a global platform for fully-depleted CMOS sensors
 - The sensitive area has been developed and detector performance appears very promising
 - Fine granularity and low power make it suitable for the vertex trackers
 - Periphery needs to implement features for system integration: command decoder, 1.28 Gbps serializers...
- **ATLASPIX3** (AMS/TSI 180 nm) is a well-developed full-size sensor:
 - Already a possible solution for the bulk of the detector silicon area
 - It is used to investigate integration and system issues
- **Resistive Silicon Detectors** are an extremely interesting option for the Silicon Wrapper:
 - Micrometric spatial resolution even with coarse granularity: reduced number of channels
 - Provide a TOF layer supplementing the drift chamber particle ID
- Plenty of fascinating electronic design and sensor development will be needed to arrive to build a state-of-art detector within the time scale of future e⁺e⁻ factories
- At the same time, it is possible to address system aspects with already existing detectors

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

ATLASPIX3 Readout Architecture

- Chip architecture
 - organized in 132 columns, each with:
 - 372 pixels
 - 372 hit digitizers (HDs)
 - **80 content addressable memory cells (CAM)**
 - two end-of-column multiplexers (EoC mux)
 - digital part (HDs, CAM, EoCs) in chip periphery, separated from analog pixels electronic (CSA and comparator)
 - chip periphery also contains the readout control unit (RCU), the clock generator, configuration registers, DACs, linear regulators and IO pads
 - triggerless and triggered readout
 - two EoCs

Prague, 20 July 2024

- 372 hit buffers for triggerless RO
- 80 trigger buffers for triggered RO

ARCADIA: MD3 Architecture

- Pixel size 25 μm x 25 μm, Matrix core 512 x 512, 1.28 x 1.28 cm silicon active area, "sideabuttable"
- Triggerless data-driven readout and low-power asynchronous architecture with clockless pixel matrix
- Event rate up to 100 MHz/cm² (post-layout simulations, to be demonstrated: test-beam in late 2023)
- Each sector has an independent readout and output link when operating in High Rate Mode
- Sector data is sent out (8b10b encoded) via dedicated 320MHz DDR Serialisers
- In Low Rate Mode, the first serialiser processes data from all the sections. The other serialisers and C-LVDS TXs(*) are powered off in order to reduce power consumption.

Prague, 20 July 2024

UNIVERSITÀ DEGLI STUDI DI MILANO

The IDEA Concept: Vertex Detector

Inner vertex layout

Prototypes built for Belle II upgrade in Pisa

Prague, 20 July 2024

UNIVERSITÀ DEGLI STUDI DI MILANO

The IDEA Silicon Tracker

Outer Vertex Stave prototyping

Bell

Beam Background

Incoherent Pairs Creation (IPC)

see talk by A. Ilg

- Cluster size of 5, safety factor of 3, 25 µm pitch pixels
- Cut at 1.8 keV of deposited energy (500 e⁻)

M. Boscolo @ MAPS detector for FCCee Workshop

Secondary e+e- pairs produced during bunch crossing via the interaction of beamstrahlung photons with real or virtual photons.

First occupancy and hit rates calculations in the vertex detector

	FCC-ee	ALICE ITS3
Occupancy	$\sim 20 \times 10^{-6}$	$\sim 30 \times 10^{-6}$
Hit rate	170 MHz/cm ²	250 MHz/cm ²