Fibre-based, **Capillary Tube Dual-Readout** Calorimeter **TB** Analysis and Simulation

Andreas Loeschcke Centeno (University of Sussex) (<u>a.loeschcke-centeno@sussex.ac.uk</u>) On behalf of the IDEA Dual-Readout Calorimeter Group

UNIVERSITY OF SUSSEX

Dual-Readout Calorimetry [reference]

- Large fluctuations in fraction of EM
 component (f_{FM}) for hadronic showers
- If calorimeter response to EM part different from that to non-EM part (h/e ≠1): Energy resolution of calorimeter largely limited by f_{EM}
- Dual-Readout calorimetry allows to remove fluctuations by correcting for f_{EM} event-by-event using two readout channels with different h/e
 - Exploit complementary information about shower development
 - Scintillation and Cherenkov channel

$$E = \frac{S - \chi C}{1 - \chi} \qquad \chi = \frac{1 - (h/e)_S}{1 - (h/e)_C}$$

Dual-Readout Calorimetry [reference]

- Calibration with electrons of known energy for both em and hadronic showers
 - $\circ~$ Potential to use as ECAL and HCAL combined
 - Universal for all hadron types
- Restored Gaussian and linear response to hadrons
- Improved energy resolution

Andreas Loeschcke Centeno

IDEA Dual-Readout Calorimeter [reference]

-4 -3 -2

x/mm

- Geometry built from projective towers
- O(100M) fibres embedded in absorber in longitudinal direction
- Absorber material being investigated (copper, brass, steel, ...)
- Tower geometries, based on chessboard or **honeycomb** layout of fibres, available
- High transverse granularity
 - Excellent angular resolution
 - Lateral shower shape sensitivity
- No longitudinal segmentation out of the box
- For both **EM** and **HAD** calorimetry
 - $\circ~$ Option with dedicated crystal ECAL in front

2021 Testbeam (Bucatini Prototype) [reference]

Prototype based on capillary brass tubes of 2mm outer

SPS 2021 Test Beam Setup

[reference]

- Positron beam highly contaminated with hadrons
- Cherenkov counters only reliable up to 30 GeV
 - Need to rely on Preshower to make positron selection
- **Preshower** placed far from front face of **calorimeter** due to access restrictions
 - Induced shower leakage
- Delay wire chambers with limited (~2 mm) spatial resolution

Lateral Shower Shape Measurement [reference]

- Need to confirm ability to reconstruct shower structure with testbeam prototype
- Lateral Profile: average signal carried by single fibre located at distance *r* from shower barycenter
- Compare testbeam results with simulation of prototype in Geant4

- Good agreement with G4 simulation
- Shower barycenter reconstruction to O(mm) possible

Andreas Loeschcke Centeno

ICHEP Prague 2024

Energy Modulation [reference]

- Observing signal modulation in Y_{calo} (shower barycentre)
 - Dependence on impact point
 - Introduce correction based on incident row

Energy Resolution Results [reference]

- After calibration of towers with one 20 GeV run and Y_{calo} correction:
 - Lineratity well within 1%
- ~17% stochastic term
 - simulation predicts 14% achievable

SPS 2023 Test Beam Setup

- Mostly similar setup
- Addressed some of the issues of 2021 test beam
 - Added third Cherenkov counter
 - New, properly working **delay wire chamber**
 - Moved the **Preshower** closer to calorimeter
 - Allowed for vertical and horizontal rotation of the **prototype**
- Shown results are *preliminary*

TB2023 Results: Lateral Shower Shapes

- Lateral shower profile largely independent of incident energy
- Strong dependence on vertical and horizontal rotation of calorimeter with respect to beam
 - Shower develops over more fibres

TB2023 Results: Energy Linearity and Resolution

HiDRa (High resolution, highly granular Dual-Readout demonstrator)

- Prototype for hadronic shower containment under construction (see <u>talk by Romualdo Santoro</u>)
- $65 \ge 65 \ge 250 \text{ cm}^3$
- 80 minimodules, each 16x64 tubes
- Mixed SiPM and PMT readout
 - 10240 SiPMs
 - 2 PMTs per minimodule
- Started to study geometry in simulation

HiDRa: Spatial Resolution

- Reconstruction of shower barycentre from SiPMs
- Grouping of fibres has **minimal effect** on spatial resolution

Andreas Loeschcke Centeno

HiDRa: Single Particle Energy Resolution [reference]

Electron resolution in [10, 100] GeV Range

Pion resolution in [10, 100] GeV Range

- First estimate of hadronic energy resolution
 - somewhat limited by leakage (mostly lateral) 0

EM resolution in line with expectations

Full Detector Simulation

- First full detector simulation with capillary tubes under "construction"
- Using DD4hep simulation framework
- First results to come soon

Summary

- Two successful test beam campaigns with electromagnetic prototype
 - Positron showers [10-120 GeV at SPS]
 - TB2021 results <u>recently published</u>
- Hadronic prototype under construction
 - Partial characterisation with test beam at SPS in August
 - Expected to be fully finished by end of year
- Test beam data used to validate Geant4 simulation
 - Results for Hidra prototype seem promising
- Full Simulation of IDEA calorimeter with capillary tubes under development

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761.

Thank you for your attention!

Backup-Slides

IDEA (Innovative Detector for Electron-positron Accelerators) [reference]

- Detector concept for future circular leptonic collider
- Key components:
 - Vertex detector: silicon pixels based on MAPS
 - low material Drift Chamber
 - Silicon micro-strip layer
 - $\circ~$ Thin Solenoid: 0.7 X_0 and 0.16 $\lambda_{\rm int}$, 2 T
 - Preshower: μ-RWELL placed behind absorber (barrel: Solenoid, forward region: Lead plate)
 - Single Dual-Readout Calorimeter: for both EM and HAD calorimetry
 - Option to have crystal ECAL being explored
 - **Muon detection**: *µ*-RWELL in 3 layers
 - Magnet return yoke

Positron Position & Energy Measurement [reference]

E^{s,c} [GeV]

 $\sum v \cdot F$.

Use barycentre of shower (central tower only):

 $\Sigma \dots \Gamma$

$$X_{CALO} = \frac{\sum_{i} x_{i} E_{i}}{\sum_{i} E_{i}}$$

$$Y_{CALO} = \frac{\sum_{i} y_{i} E_{i}}{\sum_{i} E_{i}}$$

$$Y_{CALO} = \frac{\sum_{i} y_{i} E_{i}}{\sum_{i} E_{i}}$$

$$\sum_{i=1}^{22} + \cdots + \sum_{i=1}^{3} \sum_{i=1}^{3}$$

3 [mm]

Andreas Loeschcke Centeno

ICHEP Prague 2024

Modulation Correction [reference]

Andreas Loeschcke Centeno

HiDRa Leakage

Events

10⁴

10³

10²

10

0

Lateral leakage has major impact on energy resolution UNIVERSITY OF SUSSEX Longitudinal leakage leads to X low-reconstructed-energy events Leakage Components, 2000 mm Depth, 40 GeV Leakage Components, 2500 mm Depth, 40 GeV Events 10^{4} Lateral Leakage, Mean value: 0.0679 Longitudinal Leakage, Mean value: 0.0126 10^{3} 10² 10

0.1

0.2

IDA