

Alan Barr

ICHEP 2024

See also at ICHEP24: FASER TeV Neutrino Results: <u>Sergey Dmitrievsky</u>, [Yesterday, 18:15] FASER BSM physics search results: <u>Jack MacDonald</u> Sat 16:45, South Hall 1A

With thanks to Jamie Boyd and Felix Kling for material

Introduction

FASER designed to search for new, light, long-lived particles (LLPs), and study neutrinos.

- These are produced in the **decay of light hadrons** which are produced in the LHC collisions.
- Light hadron production is very peaked in the **forward direction**, extremely collimated with the beam collision axis line of sight (LOS), hence even small detectors covering the angular region less than a miliradian around the LOS have good physics sensitivity.

- The Forward Physics Facility has a rich and broad physics programme
- Three main physics motivations
 - Beyond Standard Model (BSM) "dark sector" searches
 - Neutrino physics

- The Forward Physics Facility has a rich and broad physics programme
- Three main physics motivations
 - Beyond Standard Model (BSM) "dark sector" searches
 - Neutrino physics
 - QCD physics
- In order to fully benefit from the increase in luminosity from the HL-LHC, the FPF will allow:
 - Longer detectors to increase target/decay volume
 - Wider detectors to increase sensitivity to heavy flavour produced particles
 - Space for **new detectors** with complementary physics capabilities

BSM Physics

- The FPF experiments have strong sensitivity in all of the dark sector PBC benchmark models
- In some of these the sensitivity is not as strong as that of SHiP
- There are several classes of models where the FPF is more powerful than SHiP

LLPS FROM COMPRESSED SPECTRA

- LLPs can result from weak couplings.
- But they can also arise generically from compressed spectra (e.g., inelastic DM), where decays are phase-space suppressed by degeneracies.
- In this case, decays $\chi_1 \rightarrow \chi_0 \gamma$ lead to very soft photons that can be difficult to detect.
- But these are boosted at the LHC by $\gamma \sim 1000$, FASER2 can detect GeV particles with even ~MeV mass splittings, thermal relic target.
- Difficult at SHiP (sensitivity contour assumes E_{γ} threshold of 300 MeV, 2 10²⁰ POT).

Further examples in the backup slides

Neutrinos at the FPF

LHC provides a **strongly collimated** beam of **TeV energy neutrinos** of **all three flavours** in the far forward direction.

Proposed FPF experiment have potential to detect O(1M) neutrinos: $O(10^6)$ muon neutrinos, $O(10^5)$ electron neutrinos, $O(10^4)$ tau neutrinos

Application: Astroparticle Physics

CERN

Application: QCD

TeV Energy Neutrino Interaction

Neutrino DIS at the FPF

neutrino DIS data will improve PDFs [FPF, P5 Input] [Cruz-Martinez et al. 2309.09581]

breaks PDF/BSM degeneracy for main LHC experiments

[Rojo, <u>FPF7 Talk</u>]

FORWARD PHYSICS FACILITY

A comprehensive site selection study by the CERN Civil Engineering group has identified an ideal location ~600 m west of ATLAS.

The site is on CERN land in France

ATLAS

The cavern is 65 m-long, 9 m-wide/high

SPS

LHC

- Shielded from ATLAS by 200m of rock
- Disconnected from LHC tunnel
- Cost: ~CHF 40M
- Vibration, safety studies: can construct FPF without disrupting LHC operations
- Radiation studies: can work in FPF while LHC is running (HL-LHC starts 2029)

•

FPF CE Site Investigation Works

- No showstoppers identified
- Area looks good for excavation •

- FPF Experiments
- At present there are **4** experiments being designed for the FPF
 - Diverse technologies optimized for particular SM and BSM topics
 - FPF covers $\eta > 5.5$, experiments on LOS cover $\eta \gtrsim 7$
- Experimental layout being optimised
 - Many opportunities for new groups

FPF Experiments

- At present there are **4 experiments** being designed for the FPF
 - Diverse technologies optimized for particular SM and BSM topics
 - -~ FPF covers η > 5.5, experiments on LOS cover $\eta\gtrsim7$
- Experiment still in early design phase
 - Many opportunities for new groups

Phys. Rev. D **102**, 032002 Phys. Rev. Lett. **131**, 031801 Phys. Let B, **848**, 138378 arxiv: 2403.12520 CERN-FASER-CONF-2024-001

- All but one of the proposed FPF experiments have pathfinder versions already running at the LHC
 - FASER, FASERv, milliQan
 - Physics results from these experiments give confidence that the FPF physics potential can be realized

PHYS	SICAL REVIEW LETTERS		CERN-EP.2024-079	
Highlights Feature	Recent Accepted Collections Authors Referees Search Press About	Physics Letters B Volume 848, January 2024, 138378	First Measurement of the v, and v _p . Interaction Cross Sections at the LHC with FASER's Emulsion Detector FSER Collaboration Rohan Mammen Anaham (*). John Anders ¹⁰ , Clark And (*). Alka Arigu ¹⁰ , Tomska Arigu ¹⁰ , ¹¹ Jerneny Adiason (*). Picina II, Benischner ¹⁰ , Tohan Incella ¹⁰ , John Moyl ¹⁰ , John Internet ¹⁰ , Angla Barger ¹⁰ , Fanel Cohor, Mohrn D'Ondrie ¹⁰ , ¹⁰ Jehan Deteck ¹⁰ , ¹⁰ Jen ¹⁰ Jen ¹⁰ , ¹⁰ Jen ¹⁰ , ¹⁰ Jen ¹⁰ , ¹⁰ Jen	CERN-FASER-CONF-2024 April 6, 303 Search for Axion-Like Particles in Photonic Final States with the FASER Detector at the LHC FASER Collaboration
First PHYSICAL REVIEW D covering particles, fields, gravitation, and coemology Highlights Recent Accepted Collections Authors Referees Search Press Abou	Direct Observation of Collider Neutrinos with FASER at the u et al. (FASER Collaboration) str. 131, 031801 – Published 19 July 2023 e Viewpoint: The Dewn of Collider Neutrino Physics	Letter Search for dark photons with the FASER detector at the LHC FASER Colloboration*	Itel ⁴ , Giurege Icobecci ⁶ , Tonohm Inade ¹⁰ , Lace Iedice ⁶ , Star Jabore ⁸ , Han Koo ⁶ , Farging Kajenovitz ⁶⁰ , Takum Kau ⁶ , Hinoia Kashatari, ⁴⁰ , Keykon ⁶ , ⁴ Hin Ki, ⁴⁰ , Dunki Kak ⁶ , ⁴⁰ , Manife Kasmaka ¹⁰ , ¹⁰ , Inato Kee ⁶ , ⁴¹ , ⁴¹ ,	The first FASER search for a light, long-lived particle decaying into a pair of photons is reported. The search uses the collected 2022 and 2023 LHC proton-proton collision data at $\sqrt{z} = 13.5$ GeV, corresponding to an integrated luminosity of 57.1 fb ⁻¹ . A model with axion like particles (ALPs) dominantly coupling to two shared Model particles, $g_{\rm MW}$, mass many between 0 and 200 MV and couplings to two shared Model particles, $g_{\rm MW}$, the electromagnetic calculater and an signal in the vetto similators. One event is observed, compared to a background expectation 0.04 ± 0.24 wetto, which is a entryle dominated by neutrino interactions. World-leading constraints on ALPs are obtained for masses up to 300 MeV and coupling around 10 ⁻⁴ GeV-1, lotting a particular forgin of the 300 MeV and coupling around 10 ⁻⁴ GeV-1, lotting a particular forgin of
Gpen Access Search for millicharged particles in proton-proton collisions at $\sqrt{s}=13~{ m TeV}$	References No Citing Articles PDF HTML Export Citation ABSTRACT -	Show more + Add to Mendeley \$ Shore 5 Cite https://doi.org/10.1016/ji.physletb.2023.138378 7 Get rights and content 7 Under or Creative Common Sicense 7 0 open access	YOBN C6131 Convol 21, Susymbul YoBN C6131	parameter space. CONTENTS I. Introduction II. Axion-Like Particles in FASER
A. Ball et al. Phys. Rev. D 102 , 032002 – Published 6 August 2020 Article References Citing Articles (23) PDF HTML Export Citation	We report the first direct observation of neutrino interactions at a particle collider experiment. Neutrino candidate events are identified in a 13.6 TeV center-of-mass energy <i>pp</i> collision dataset of 35.4 hr ⁻¹ using the active electronic components of the FASER detector at the Large Hadron Collider. The candidates are required to have a track propagating through the entitie length of the FASER detector and be consistent with a usion entrino charged-current interaction. We line If 13:1 ⁻¹ ₂ neutrino interactions with a significance of 16 standard deviations above the background-only hypothesis. These events are consistent with the characteristics expected form neutrino interactions in terms of	Abstract The FASER experiment at the LHC is designed to search for light, weakly-interacting particles produced in proton-proton collisions at the ATLAS interaction point that travel in the far-forward direction. The first results from a search for dark photons decaying to	1900 The Standard	III. Ine PASED JusticeOF IV. Data and Simulation Samples V. Event Selection and Reconstruction VI. Background Estimation A. Neutrino Background Contributions 1. Other Background Contributions 1. VII. Systematic Uncertainties 1
► ABSTRACT We report on a search for elementary particles with charges much smaller than the electron charge using a data sample of proton-proton collisions provided by the CERN Large Hadron Collider in 201 corresponding to an integrated luminosity of 37.5 th ⁻¹ at a center-of-mass energy of 13 TeV. A prototype scintilitato-based detector is deployed to conduct the first search at a hadron collider sensitive to particles with charges ≤ 0.1e. The existence of new particles with masses between 20 and 4700 MeV is excluded at 95% confidence level for charges between 0.006 and 0.3e, depending	secondary particle production and spatial distribution, and they imply the observation of both neutrinos and anti-neutrinos with an incident neutrino energy of significantly above 200 GeV.	an electron-positron pair, using a dataset corresponding to an integrated luminosity of 27.0 h ⁻¹ collected at centre-of-mass energy $\sqrt{s} = 13.6$ TeV in 2022 in LHC Run 3, are presented. No events are seen in an almost background-free analysis, yielding world-leading constraints on dark photons with couplings $\epsilon \sim 2 \times 10^{-5} - 1 \times 10^{-4}$ and masses ~ 17 MeV -70 MeV. The analysis is also used to probe the parameter space of a massive gauge boson from $30(1)_{B-L}$ model, with couplings $g_{B-L} \sim 5 \times 10^{-6} - 2 \times 10^{-5}$ and masses ~ 15 MeV -40 MeV excluded for the first time.	Antard The Section 2.5 and 2.5	VIII. Results 1 IX. Conclusions 1 Appendix 1 2. Solutilator Efficiencies in 2022 and 2023 Data 1 2. FASTER ALP Limit in Relation to Previous Experiments 1 3. Event Display 4 4. Neutrino Compositions by Flavour 1 References 133 2

FASERv2 detector overview

Emulsion tungsten neutrino detector, scaled up version of **FASERv**. 20tonne target mass:

- 80x20cm² in transverse plane (64x25cm² also under consideration)
- 8m long
- 3300x 2mm thick tungsten plates interleaved with emulsion film Electronic detectors to allow to **timestamp** events and connect muons from neutrino interactions with those reconstructed in the FASER2 spectrometer (for charge/momentum measurement).
- Emulsion needs to be **replaced** with track occupancy of O(10⁵) tracks/cm² (about 2months of HL-LHC running)
- To save cost would like to improve this to have one set of emulsion per year:
- reduce track multiplicity by factor of 3 with sweeper magnet,
- or **improve tools** to allow analysis with higher occupancy Under study...
- Several testbeam studies and R&D ongoing related to:
- Detector assembly
- Emulsion film optimization (long term operation, higher track occupancy)
- Analysis tools (re-reconstruct FASERv data skipping every-other-film to mimic 2mm thick tungsten)

FASER2 scaled up version of **FASER** experiment.

Designed to search for decaying **BSM LLPs** (100x larger transverse size to FASER, and 7x longer decay volume) and to measure charge/momentum of muons from neutrino interactions in FLArE and FASERv2)

Larger transverse size => need to use to different technologies than in FASER:

Investigated different options for tracking detector technology and magnets.

Baseline tracker – SciFi tracker (maybe able to re-use LHCb modules removed in LS3 depending on timing). Two options for magnet:

- Custom made super-conducting dipole (2Tm bending power 1.7x1.7m² square air-core apperture):
 - Prelimiary quote from Toshiba: 4.1MCHF 3-4y lead-time
- 4 off-the-shelf crystal-puller magnet units (2Tm (central) bending power 1.6m diameter air-core apperture):
 - Prelimiary quote from Toshiba: 2.3MCHF 1-2y lead-time

FORMOSA is a **scintillator** based **millicharged particle** detector (similar to the running **miliQan** experiment). Idea is to see low scintillation signal in multiple bars pointing at IP.

Baseline design: 20x20 array of scintillator bars (with surrounding scintillators to veto backgrounds)

MCP mass/GeV

FPF Documentation

FPF workshop series: <u>FPF1</u>, <u>FPF2</u>, <u>FPF3</u>, <u>FPF4</u>, <u>FPF5</u>, <u>FPF6</u>, <u>FPF7</u>, <u>FPF Theory Day</u>

FPF Paper:

<u>2109.10905</u>

~75 pages, ~80 authors

Snowmass Whitepaper: 2203.05090 ~450 pages, ~250 authors

Recent Summary:

FPF Update

Technical Documents:

Facility Technical Study Muon Flux Study Vibration Study Geotechnical Report

Summary

- The FPF greatly expands the LHC physics progamme
- The **beam** is there already
- Broad and interdisciplinary physics programme
 - Neutrinos, QCD, Cosmic Ray, BSM, ...
- The cost is **modest**
- Fully aligned with existing **European strategy**
- Great **test-bed** for new ideas
- Could run in LHC Run 4

- FPF is a proposed new facility to house several experiments on the collision axis line-of-sight in the HL-LHC era
 - Maximise the physics from the HL-LHC
- The FPF experiments would :
 - Have world leading sensitivity in several BSM models
 - Study O(1M) TeV neutrinos (covering all flavours) with important implications for:
 - Neutrino physics
 - QCD
 - Astroparticle physics
- Following many studies within the PBC we have come-up with a baseline design for the facility that can house the proposed experiments
 - No showstoppers identified for implementing the facility or for operating the experiments
 - Facility cost of only ~40MCHF
- Conceptual designs of the experiments are ongoing with baseline solutions available for the different detector components
 - More studies will allow better optimizations and improved physics reach
- Plan to submit a proposal for the FPF to the ESPP in Q1 2025
 - If viewed favourably the facility can be implemented to allow **first physics during Run 4**

EXTRAS

Documentation on facility studies

CERN-PBC-Notes-2024-004

https://cds.cern.ch/record/2904086

CERN-PBC-NOTE 2024-003

https://cds.cern.ch/record/2901520/

CERN-PBC-NOTE 2023-002 https://cds.cern.ch/record/2851822/

1

Physics Beyond Colliders 18 June 2024 Jamie .Boyd@cern.ch	CERN-PBC-NOTE 2024-003 Feynald Colliders 4 July 2024 davide.gamba@cern.ch
te of Facility Technical Studies for the FPF	Impact of Vibration to HL-LHC Performance During
C Working Group J. Boyd, T. Bud, JP. Corso, D. Gamba, A. Magazinik, A. Navascues Cornago, te (CERN, CH-1211 Geneva, Switzerland) tors from the FPF Experiments Bartoszek (Bartoszek Engineering), Y. Li (BNL), S. Linden (BNL), C. Miraval Trabocchi (BNL) Sosoo (Bern) N. Sumi (KEK), J. Carroll (Liverpool), A. Lowe (Oxford) A: R. Loos (CERN)	D. Gamba, H. Bartosik, M. Guinchard, J. A. Osborne, K. Pál, C. Vendeuvre, J. Wenninger, K. Widuch CERN, CH-1211 Geneva, Switzerland Keywords: excavation, forward physics facility, ground motion, tunnel deformation, vibration, FPF, LHC, HL-LHC, SPS
FFF for Summary forward Physics Facility (FPF) has been proposed to house a set of experiments collider neutrinos and search for new particles in the High-Luminosity LHC era. tr provides an update to the space and infrastructure requirements of the Facility, f integration studies carried out by CERN technical teams in conjunction with the rimental community. us radio protection studies showed that access to the FPF cavern during LHC ration was expected to be possible. This update includes vibration studies, which hat no major disruptions to HL-LHC and SPS performance are expected during vation works. FPF construction, then, is not expected to interfere with the LHC rocceed largely independent of the LHC schedule. the last study, a site investigation, where a core was drilled to the depth of the rm, yielded broadly positive results, confirming the reliability of the Facility design. iled considerations of services have been incorporated, leading to a slight increase d an accompanying modest increase in cost for the civil engineering compared to stimates. The updated timeline for the works shows that the FPF could be con- vithin a few years of approval, with no special R&D needed for the Facility design.	The Forward Physics Facility (FPF) is a proposed experimental site intended to be positioned approximately 630 meters from the ATLAS interaction point. It aims to capture domg-lived particles and neutrinos that travel along the beam collision axis and fall outside the ATLAS detector's acceptance. The construction of this facility, particularly the excavation of the necessary shaft and cavern, could occur concurrently with beam operations at the CERN accelerator complex. Therefore, it is crucial to ensure that the ground motion resulting from these construction activities does not disrupt the normal functioning of the SPS and LHC. This study details how sensitive the SPS and LHC rings are to vibrations and misalignments close to the FPF construction site. It also examines the expected effects on beam operations, incorporating lessons learned from the HL-LHC infrastructure development near the ATLAS experiment, previous civil engineering projects, and established knowledge of slow ground movements in the vicinity.
1 3 south 2: S = V F; object a P; et an ev	<text><text><text><text><section-header><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header></text></text></text></text>

1

FPF Organization

Steering Committee: Jamie Boyd, Albert De Roeck, Milind Diwan, Jonathan Feng, Felix Kling

Coordination Panel: Aki Ariga, Alan Barr, Brian Batell, Jianming Bian, Jamie Boyd, Giovanni De Lellis, Albert De Roeck, Milind Diwan, Jonathan Feng, Chris Hill, Felix Kling, Juan Rojo, Dennis Soldin, Anna Stasto

WG0 Facility: Jamie Boyd

WG1 Neutrino Interactions: Juan Rojo
 WG2 Charm Production: Anna Stasto
 WG3 Light Hadron Prod: Luis Anchordoqui, Dennis Soldin
 WG4 BSM: Brian Batell, Sebastian Trojanowski
 WG9 FORMOSA: Matthew Citron, Chris Hill

Technical group:

Bringing together experts from CERN, BNL, and an external engineering contractor Bartoszek engineering: BNL: M. Diwan, S. Linden, Y. Li, C. Miraval + L. Bartoszek CERN: J. Boyd, J.P Corso (integration), A. Magazinik (integration), F. Resnati (neutrino platform) Meeting bi-weekly on Fridays.

WG5 FASER2: Alan Barr, Josh McFayden, Hide Otono

Strongly Reviewed in Snowmass.

Executive Summary (10 pages)

The Energy Frontier (Science Drivers 1 - 3 & 5): The Energy Frontier currently has a top-notch program with the Large Hadron Collider (LHC) and its planned High Luminosity upgrade (HL-LHC) at CERN, which sets the basis for the Energy Frontier vision. The fundamental lessons learned from the LHC thus far are that a Higgs-like particle exists at 125 GeV and there is no obvious and unambiguous signal of BSM physics. This implies that new physics either occurs at scales higher than we have probed, must be weakly coupled to the SM, or is hidden in backgrounds at the LHC. The immediate goal for the Energy Frontier is to continue to take and analyze the data from LHC Run 3, which will go on for about three more years, and carry out the 2014 P5 recommendations to complete the HL-LHC Upgrade and execute its physics program. The HL-LHC will measure the properties of the Higgs Boson more precisely, probe the boundaries of the SM further, and possibly observe new physics or point us in a particular direction for discovery.

A new aspect of the proposed LHC program is the emergence of a variety of auxiliary experiments that can use the interactions already occurring in the existing collision regions during the normal LHC and HL-LHC running of the ATLAS, CMS, LHCb, and ALICE experiments to explore regions of discovery space that are not currently accessible. These typically involve observing particles in the far forward direction or long-lived particles produced at larger angles but decaying far outside the existing detectors. These are mid-scale detectors in their own right and provide room for additional innovation and leadership opportunities for younger physicists at the LHC. The EF supports continued strong U.S. participation in the success of the LHC, and the HL-LHC construction, operations, and physics programs, including auxiliary experiments.

future collider

Т

New colliders are the ultimate tools to extend the EF program into the next two decades thanks to the broad and complementary set of measurements and searches they enable. With a combined strategy of precision measurements and high-energy exploration, future lepton colliders starting at energies as low as the Z-pole up to a few TeV can shed substantial light on some of these key questions. It will be crucial to find a way to carry out experiments at higher energy scales, directly probing new physics at the 10 TeV energy scale and beyond. The EF supports a fast start for the construction of an e^+e^- Higgs Factory (linear or circular), and a significant R&D program for multi-TeV colliders (hadron and muon). The realization of a Higgs Factory will require an immediate, vigorous, and targeted accelerator and detector R&D program, while the study towards multi-TeV colliders will need significant and long-term investments in a broad spectrum of R&D programs for accelerators and detectors.

Finally, the U.S. EF community has expressed renewed interest and ambition to develop options for an energy-frontier collider that could be sited in the U.S., while maintaining its international collaborative partnerships and obligations with, for example, CERN.

A new aspect of the proposed LHC program is the emergence of a variety of auxiliary experiments that can use the interactions already occurring in the existing collision ... to explore regions of discovery space that are not currently accessible. These typically involve observing particles in the far forward direction or long-lived particles ... decaying far outside the existing detectors. These are mid-scale detectors in their own right and provide room for additional innovation and leadership opportunities for younger physicists at the LHC. The EF supports continued strong U.S. participation ... including auxiliary experiments.

FASER2 Magnet

Two possible magnet solutions investigated for the FASER2 magnet:

- Custom made SC dipole based on (descoped) SAMURAI experiment magnet
 - 2Tm bending power, 1.7m x 1.7m apperture
 - SAMURAI magnet built by Toshiba, JP, but similar magnet could be built by TESLA, UK
 - Cost (Toshiba) 730 MJPY (4.1 MCHF today), 3-4y lead-time
- Off the shelf 'crystal puller' magnets:
 - 4 units: 0.4T central field 1.25m depth => 2Tm bending power (central region)
 - 1.6m diameter
 - Available from both Toshiba and TESLA
 - Cost (Toshiba) with modified mechanics to operate on side: 400 MJPY (2.3MCHF), 1-2y lead-time

BSM Physics

- The FPF experiments have strong sensitivity in all of the dark sector PBC benchmark models
- In some of these the sensitivity is not as strong as that of SHiP
- There are several classes of models where the FPF is more powerful than SHiP

MILLI-CHARGED PARTICLES

- The FPF accommodates a suite of experiments that can be optimized for various physics cases. This diversity is essential in probing a broad range of BSM physics possibilities.
- For example: FORMOSA, targeting milli-charged particles.
- Motivated by dark sectors with massless dark photons, but also new particles with magnetic or electric dipole moments, ...
- World-leading sensitivity for masses from ~100 MeV to 100 GeV.
- Will not be probed by SHiP (and no fixed target experiment can produce particles with mass > 10-20 GeV).

BSM Physics

- The FPF experiments have strong sensitivity in all of the dark sector PBC benchmark models
- In some of these the sensitivity is not as strong as that of SHiP
- There are several classes of models where the FPF is more powerful than SHiP

STRONGLY-INTERACTING DARK SECTORS

- U(1) dark force → dark photons, milli-charged particles.
- Any other dark force → strongly-interacting dark sector. Dark particles ("quirks") can be pair-produced at the LHC, but then oscillate down the beampipe, bound together by the dark color force.
- FASER2 can discover quirks with masses up to ~TeV, as motivated by the gauge hierarchy problem (neutral naturalness).
- Requires LHC energies to produce new TeV particles, impossible to see at fixed target experiments.

Backgrounds

Muon background flux estimatewd to be 0.6Hz/cm² at L=5e34cm⁻²s⁻¹ in region 20cm from LOS. Muon hotspots horizontally +/-2m from the LOS. Reducing the muon flux would be beneficial for some experiments, investigating the possibility of a sweeper magnet to reduce the flux.

Detailed FLUKA simulations used to:

- Estimate muon background
- Estimate radiation levels (RP)
- Estimate radiation to electronics / detector

All look encouraging for implemtning the FPF experiments

FLUKA simulation of Run 3 LHC setup validated at 20% level by FASER/SND@LHC data

(Note for HL-LHC much of the LSS changes => significantly reduces estimated muon flux per fb⁻¹)

Please find enclosed the first draft of the updated cost based on the results of the site investigations and the cost review done by ARUP. The estimated cost of the facility based on the existing design is 30.1MCHF, the estimate being a Class 4 (accuracy ranges being -15% to -30% on the low side, and +20% to +50% on the high side).

Ref.	Work Package	Cost [CHF]
1.	Underground Works	10,000,000.00
1.1	Preliminary activities	1,600,000.00
1.2	Access shaft	3,900,000.00
1.3	Experimental Cavern	4,500,000.00
2.	Surface Works	6,120,000.00
2.1	General items	640,000.00
2.2	Topsoil and earthworks	660,000.00
2.3	Roads and network	730,000.00
2.4	Buildings	4,090,000.00
2.4.1	Access building	2,000,000.00
2.4.2	Cooling and ventilation building	1,400,000.00
2.4.3	Electrical Building	490,000.00
2.4.5	External platforms	200,000.00
3.	General items	10,000,000.00
4.	Miscellaneous	4,000,000.00
	TOTAL CE WORKS	30,120,000.00

Assumptions

- 1. Services not included
- 2. Technical galleries not included
- 3. Cranes not included
- Access building as a conventional steel portal frame structure with cladding, only one floor
- 5. CV Building as a reinforced concrete building, only one floor
- 6. Finished floor level at 450m ASL
- 7. Sectional doors not included

Very preliminary estimate of cost increase to make cavern larger (to accommodate additional infrastructure etc..):

	Additional cost
5m longer cavern	700,000 CHF- 1,000,000.00 CHF
10m longer cavern	1,400,000 CHF - 2,000,000.00 CHF
Increase of the radius of the cavern by 1m	700,000 CHF- 1,000,000.00 CHF

Very preliminary costing of technical infrastructure for cavern at 10MCHF level.

Total cost of facility (no experiments): ~40MCHF