Time of flight detector based on LGAD technology for

the Circular Electron Positron Collider

42ND INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

ICHEP 2024 | PRAGUE

Yunyun Fan

On behalf of the CEPC ToF & out tracker group

(fanyy@ihep.ac.cn IHEP, Chinese Academy of Sciences)

19th, July, 2024

Motivation: Time of Flight for CEPC

• CEPC: huge measurement potential for precision tests of SM (Higgs, electroweak physics, flavor physics, QCD/Top)

- **Particle separation problems** of Gas detector (dE/dx) for CEPC flavor physics:
 - 0.5-2 GeV for K/pi separation, >1.5 GeV for K/p separation
- CEPC International Advisory Committee: one of the key recommendations

Precision timing detector should be determined as a matter of urgency (4D track)

Timing detector is complementary to gas detector: improves the separation ability

K/proton separation

K/p dE/dx

K/p TOF

10

p (GeV/c)

K/p dE/dx+TOF

 10^{2}

K/π dE/dx

K/π TOF

10

K/π dE/dx+TOF

 $\langle \mathbf{S} \rangle$

 10^{2}

0 - **4** GeV for K/pi separation, 0 - 8 GeV for K/p separation

4D sensor AC-LGAD: time & spatial

- The read-out electronics is connected to n++ layer
- Time resolution ~ 30ps
- Position resolution: pixel size/ $\sqrt{12}$
- Radiation hardness: $10^{15} \sim 10^{16} n_{eq}/cm^2$

 Metal AC-pads separated from the n+ layer by a thin dielectric (Si₃N₄, SiO₂) 4

- Time resolution ~ 30ps
- Position resolution: 5~10 um

Review of the ToF of CEPC

- Develop LGAD based strip silicon sensors and detector modules
 - spatial resolution better than 10 µm (R-phi direction)
 - timing resolution in the range of **30-50 ps**.
- Barrel & endcap: 70 m², 20 m²
- Sensor technology: AC-LGAD

Reference TDR of CEPC

Arrangement of the ToF with strip LGAD: Barrel

Endcap Design

Chanlleges for the LGAD based ToF & Out tracker

✓ 4D LGAD based sensor

- 30-50 ps and 10 μm
- Long strip: 70 mm
- Sector strip sensor for endcap
- 50 um

$\checkmark\,$ High time precision ASIC

- 40-48 bit TDC
- Low power consumption
- Fast timing

✓ Large module:

. . . .

•

• Long ladder: 2900 mm

CEPC requirement for the sensor and ASIC

	CEPC TOF barrel	CEPC TOF endcap
Area (m²)	~ 70	~19.4
Granularity	70mm × 0.1mm	70mm × 0.1mm
Capacitance	~10 pF	~10 pF
Charge	>15fC	>15fC
Channel number	~ 1×10 ⁷	~ 2×10 ⁶
Module assembly	Wire bonding at strip	Wire bonding at strip
MIP Time resolution	~30-50 ps	~30-50 ps
Spatial resolution	~ 10 µm	~10μm (r-φ)
Number of channels per module	2816	2816
Data size	16 bit (9 TOT, 7 TOA) + channel(7bit, 128) +bunch ID(8bit) + chip ID (4-5 bit) ~40-48 bits	16 bit (9 TOT, 7 TOA) + channel(7bit, 128) +bunch ID(8bit) + chip ID (4-5 bit) ~40-48 bits

AC-LGAD sensors development at IHEP

Pixels AC-LGAD:

- Position information: 1 layer
- Pitch size 2000um, pad size 1000um
- Different N+ dose :
 - 10P, 5P, 1P, 0.5P, 0.2P

Strips AC-LGAD:

- Position information: 2 layer
- Strip length 5.6mm, width 100um
- Different Pitch size :
 - 150um, 200um, 250um

Performance of AC-LGAD: Time Resolution

- No significant change in timing resolution was observed among different pitches
- Saturation may be observed, ~ 10 ps.
- 37.5 ps timing resolution, via Beta source test.

Performance of AC-LGAD: Spatial Resolution

Spatial resolution : 8.3 μm with 150 μm pitch

Position reconstruction:

- The fraction of the signal (*R*) changes linearly with the movement of the laser.
- Good consistency between the reconstruction position and the laser position
- The smaller the pitch size, the better the spatial resolution

AC-LGAD: Spatial Resolution

- Spatial resolution Vs. Pitch size
 - ✓ Pitch size 250um \rightarrow 150um
 - ✓ Spatial resolution 11 -> 8 μ m (Strip).
- Smaller pitch sizes -> better spatial resolution

Spatial resolution Vs. pitch size

Milestones, deliverables and timeline

	Deliverable/Mil estone Title	DRD /WG	Institute	Туре	Desseminatio n Level	Due Data
M1	Report on LGAD based 4 D ToF for CEPC	WG2, WG5	IHEP	Report	DRD3 report	Month 6 (Q4 2024)
D1	20 mm long strip and sector LGAD based 4 D sensor design, fabrication, beam test, ASIC	DRD7, WG5	IHEP, IME, STU	Prototype	Manual/Presentation	Month 28 (Q1 2026)
M2	Report on demonstration Sensor performance	WG2, WG5	IHEP	Report	Publication	Month 34 (Q3 2026)
D2	40mm long strip and sector LGAD based 4 D sensor design, fabrication, beam test	WG2, DRD7, WG5	IHEP, IME, STU	Prototype	Manual/Presentation	Month 46 (Q1 2027)
M3	Report on demonstration Sensor performance	WG2, WG5	ІНЕР	Report	Publication	Month 52 (Q3 2027)
D3	70 mm long strip and sector sensor , ASIC full module	WG2,DRD7, WG5	IHEP, IME, STU	Prototype	Manual/Presentation	Month 67 (Q1 2030)
M4	Report on demonstration module performance	WG2, WG5	IHEP	Report	Publication	Month 78 (Q4 2030)

Summary

LGAD based Timing tracker development for the CEPC

- Important for flavor physics of CEPC
- Improve the k/pi,k/p separation at low energy part
- Total area: 70 m² (Barrel) + 20 m² (Endcap)
- Readout channels 10⁶

Very challenge!

- 4 D track, 30-50 ps and 10 µm (R-phi direction)
- Large area, sector strip, long strip
- High precision time resolution electronics readout

Thank you for your attention !

26

Sensor Arrangement and the readout channel

Ø203.20					Old number
		Maxmum Arc (mm)	Readout channel number	Sensor number	Hit Rate Hz/cm
RO (400-540)	52.36	70.686	707	1	10 ⁵
R1: 540-680	70.69	89.012	891	1	10 ³
R2: 680-820	89.012	107.338	1074	1	10 ²
R3:		125.664	1257	1	20
R4	125.66 4	143.990	1440	1	20
R5		162.316	1624	2	20
R6		180.642	1807	2	20
R7		198.968	1990	2	20
R8		217.294	2173	2	20
R9: 1660-1800		235.620	2357	2	20

4.1 AC-LGAD sensor test : Picosecond laser test

Picosecond laser scanning system

- Displacement accuracy 1 μm
- Automated scanning
- Picosecond laser 1064nm
- Spot size 2~5 μm

ng tracker development for CEPC, ICHEP2024, Prague

4.2 AC-LGAD sensor test: Signal attenuation

III Performance of AC-LGAD | Timing Resolution

- No significant change in timing resolution was observed among pixel and strip LGADs.
- Timing resolution improves as increasing in SNR, same trend as in spatial resolution.
- Saturation may be observed in jitter, ~ 10 ps.

٠

• 37.5 ps timing resolution, via Beta source test.

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{Landau}^2 + \sigma_{Jitter}^2$$

III Performance of AC-LGAD | Spatial Resolution--Pixel

$$\sigma_{spatial} = \sigma_{reconstruction-laser}$$

20

III Performance of AC-LGAD | Spatial Resolution--Strip

160

120

180

-0.6

-0.8

60

80

reconstructed positions

- Good consistency between the reconstruction position and the laser position
- The smaller the pitch size, the better the spatial resolution

III Performance of AC-LGAD | Spatial Resolution--Pixel

$$\sigma_{spatial} = \sigma_{reconstruction-laser}$$

22

Optimization of the Barrel Design

3D module of the Barrel

