

Searching for the $\mu^+ \rightarrow e^+e^-e^+$ Decay

In the Standard Model ($m_v = 0$) Lepton Flavor is conserved absolutely (not by principle but by structure!)

and LFV processes like $\mu \rightarrow e + \gamma$ or $\mu \rightarrow e e e$ have not been observed yet

Mu3e: search for the rare μ decay $\mu^+ \rightarrow e^+ e^- e^+$

with sensitivity BR ~ 10⁻¹⁵ to 10⁻¹⁶ (PeV scale) $\tau_{(\mu \rightarrow eee)} > 1000$ years ($\tau_{\mu} = 2.2 \ \mu$ s)

using the world's most intense continuous surface muon beam at PSI

 $\Rightarrow \text{observe} \sim 10^{16} - 10^{17} \,\mu \,\text{decays} \quad \text{(over a reasonable time)} \\ \Rightarrow \text{rate up to 2 x } 10^9 \,\mu \,\text{decays / s}$

- \Rightarrow suppress all backgrounds below 10⁻¹⁶
- \Rightarrow build a detector capable of measuring up to 2 x 10^9 μ decays / s minimum material, maximum precision

Signal and Backgrounds

common vertex coplanar $\Sigma \mathbf{p}_i = 0$ $\Sigma E_i = m_{\mu}$ $\Delta t_{eee} = 0$ common vertex

$$\Sigma \mathbf{p}_i \neq \mathbf{0}$$

 $\Sigma E_i < m_{\mu}$

$$\Delta t_{eee} = 0$$

no common vertex

$$\Sigma \mathbf{p}_{i} \neq \mathbf{0}$$
$$\Sigma \mathbf{E}_{i} \neq \mathbf{m}_{\mu}$$
$$\Delta \mathbf{t}_{eee} \neq \mathbf{0}$$

minimize multiple scattering

rejecting the background requires - $\begin{cases} \sigma_{vtx} < 300 \ \mu m \\ \sigma_p < 0.5 \ MeV/c \rightarrow \\ \sigma_t < 0.250 \ ns \end{cases}$

3

Timing

50 ns snapshot (readout frame): 100 muon decays

4D reconstruction

to suppress accidental backgrounds requires excellent timing

- < 250 ps SciFi's
- < 100 ps scint. Tiles

also determine the sense of roation, i.e. the charge of the leptons

additional ToF information < 250 ps

Mu3e Baseline Design

acceptance ~ 25% for $\mu^+ \rightarrow e^+ e^- e^+$ decay (3 tracks!)

Thin, fast, high resolution detectors

175 M HV-MAPS channels (Si pixels w/ embedded amplifiers)

~ 3 k SciFi and ~ 7 k Tile ToF channels

Very limited space in central region \rightarrow very compact design of SciFi detector

SciFi Detector Design Parameters

Requirements

thickness $x/x_0 < 0.3\%$ (< 1 mm) time resolution ≤ 250 ps efficiency > 95% limited space handle very high rates (> 10⁸ μ decays / s) high occupancy up to 250 kHz/ch.

12 SciFi ribbons at ~ 6 cm radius 32.5 mm x 300 mm 3 staggered layers 250 μ m ϕ fibers SCSF-78MJ very thin ~ 0.2% x₀ (< 800 μ m)

Si-PM readout at both ends

128 ch SiPM array (LHCb design) 250 μm pitch

Readout

MuTRiG ASIC

~ 3000 readout channels

SciFi Detector Mechanics

(part of SMB3.1)

SciFi Ribbon Production

U channel

ribbon winding tool

(full size) ribbon prototype

thickness ~ 700 μ m (i.e. < 0.2% x₀) for 3 staggered SciFi layers

ribbon profile: 4 x ~128 fibers (prototype)

ribbon metrology

8

Fiber Selection (Light Yield)

criteria:

high light yield best time performance $\sigma_t \approx \sqrt{\frac{\tau_R \tau_D}{n_{\gamma}^2}}$

commercially available 250 μ m ϕ fibers

type	att. λ (cm)	τ _{Decay} (ns)
Kuraray SCSF-78	> 400	2.8
Kuraray SCSF-81	> 350	2.4
Kuraray NOL-11	> 250	1.0
Bicron BCF-12	270	3.2

light yield @ 30 cm [thickness ~ 2 fiber ϕ]

A. B. and Y. Demets, JINST17(22)P12020

$T_{Left} - T_{Right}$ (ΔT Time Resolution)

Measure intrinsic resolution of SciFi detector, however cannot determine the crossing time

can determine effective speed of light propagation in the fiber $\rightarrow \sim 0.5 c$ (< c / n) (effective path is longer because of Internal reflections)

Correlated Dark Counts

dark counts correlated in time $\overline{\Lambda}$

Mean Time

Combine measurements from both SciFi ribbon's ends: $MT = \frac{T_{\text{Left}} - T_{\text{Right}}}{2} + T_0$

A. B. et al., NIMA1058(23)168766

Detection Efficiency

 \rightarrow inefficiency

Issues:

limited material budget of 3 SciFi staggered layers SciFi ribbon's geometry

 \rightarrow some events with very low light yield

 \rightarrow very low thresholds of 0.5 or 1.5 ph.e. & small clusters

require left / right matched clusters \rightarrow timing cut $\Delta T < n \sigma_{\Delta T}$

Outlook

We developed a SciFi timing tracker with SiPM readout at both ends for the Mu3e experiment

3 staggered layers of 250 μ m ϕ fibers SCSF-78 (Kuraray) thickness ~700 μ m, < 0.2 % x₀ time resolution \leq 250 ps (mean time) efficiency > 97 % (matched clusters with timing cut) spatial resolution ~100 μ m

In conjunction with HV-MPAS Si-pixels \rightarrow full 4D track reconstruction

Limiting factor: material budget (3 staggered SciFi layers)

- \rightarrow low light yield
 - \rightarrow not perfect (i.e. 100%) efficiency and limited time resolution

Readout based on the mixed mode MuTRiG ASIC (w/ Gigabit link) no time to discuss this ASIC, sorry 🐵

SciFi sub-detector ready for installation and commissioning in Mu3e

Si-PM Arrays

- 128 ch SiPM array from Hamamatsu (LHCb type) S13552HRQ
 - $250 \; \mu \text{m pitch}$
 - pixel size 57.5 μm x 62.5 μm
 - 4 x 16 pixels per column
 - 230 μm x 1625 μm column area
 - $V_{break} \sim 52.5 V (\pm 0.3 V same array)$

high quenching resistor

I – V curves

32.5 mm (two 64 ch. dies)

