

Mechanical tuning in Metamaterialinspired resonators

Gagandeep Kaur gagandeep.kaur@fysik.su.se ICHEP 2024 19 July 2024

Funding provided by:

The ALPHA Collaboration

The ALPHA Collaboration meeting at Yale University, September 25-26, 2023

Gagandeep Kaur 7/19/2024 ALPHA White paper: Phys. Rev. D 107, 055013 (2023)

Metamaterial

Controlling ε and μ

Negative ϵ and μ

Tech. Phys. 58, 1-24 (2013)

Wire Metamaterial: Controlling frequencies

Plasma frequency depends entirely on lattice geometry

$$\omega_p^2 = \frac{ne^2}{\varepsilon_0 m_{eff}}$$

$$m_{eff} = \frac{\mu_0 \pi r^2 e^2 n}{2\pi} \ln(\frac{a}{r})$$

Pendry et al.(1996) PhysRevLett.76.4773

Motivation behind designs: Plasma Haloscope

- Array of wires as effective medium
- Axion detection with tunable cryogenic plasma
- Axion mass matched to plasma frequency
- Metamaterial based detector
- Can in theory scan through a range of axion masses

Lawson et al. (2019), PRL

Motivation behind designs: WM filled resonator

$$\frac{\omega_p^2}{c^2} = \frac{2\pi/a^2}{\ln\left(\frac{a}{2\pi r}\right) + F(1)}$$

$$Q \simeq \frac{2\mu_0 r}{\mu\delta} \left(ln\left(\frac{a}{2\pi r}\right) + F(1) \right)$$

Wire radius = 1 mm, wire period = 10 mm, 10x10 array

Rustam et al. (2022), PRB

Metamaterial-inspired Resonator prototypes

Optimizing designs

1. 3D mechanical model

2. Run CST/COMSOL simulations

3. Get the design manufactured

4. Assemble resonator in lab

5. VNA measurements

Critical steps

Optimization parameters:

- Losses
- Coupling strength
- Quality factor
- Tuning range

Static prototypes

Tunable prototype: First tuning mechanism

R&D at Stockholm University, guided by theory and simulations from the ITMO/St. Petersburg group (**R. Balafendiev, P. Belov**, M. Gorlach, et al.)

Translational design: Optimization

- Metal discontinuities causes mode mixing
- Symmetry of design is critical for uniform field distribution

Static design vs tunable: Quality factor: ~4500 for static ~1500 to 2500 for tunable designs

Translational prototype

- Lateral translation of rods
- Material of translational combs critical
- Still modifying to improve connectivity and avoid mode mixing

Rotational prototype: Design optimization

Credit: Rustam Balafendiev

Rotational prototype

•Sail-based, metamaterial-inspired resonator

Copper conductors on a

rectangular lattice

•Resonator dimensions:

Smaller: 7.8cm X 7.8cm X 8cm Larger: 7.8cm X 7.8cm X 16cm

Transmission spectrum: Small prototype

Transmission spectrum: Large prototype

7.8cm X 7.8cm X 16cm

Comparing experiment with simulations

Mode map (3D CST sims)

7.8cm X 7.8cm X 8cm 7.8cm X 7.8cm X 16cm 13.0 13.0 1.0 1.0 12.5 12.5 12.0 -12.0 Frequency (GHz) Frequency (GHz) 11.5 11.5 -0.8 -0.8 11.0 11.0 -10.5 10.5 -0.6 -0.6 TM 110 mode 10.0 -10.0 -0.4 0.4 9.5 -9.5 TM 110 mode 0.2 0.2 9.0 9.0 100 125 150 175 100 125 150 175 50 25 75 50 75 25 0 Rotation angle (degrees) Rotation angle (degrees)

•Large prototype: 9.64 GHz, 10.71 GHz, 11.78 GHz, 12.86 GHz

TEM modes:

•Small prototype: 10 GHz, 12.5 GHz

Gagandeep Kaur 7/19/2024

17

7.8cm X 7.8cm X 8cm

Good agreement between experiment and simulation for both

• Demonstrate about 28% tuning range for both small and large systems

Gagandeep Kaur 7/19/2024 7.8cm X 7.8cm X 16cm

TM 110 mode

2D field profile of Ez calculated with COMSOL

Credit: Rustam Balafendiev

Optimization and Technical challenges

Critical interface: Oversizing of holes in outer plates

Rod diameter: 2.5mm Size of holes in top plate: 2.55mm

Optimization and Technical challenges

Critical interface: Oversizing of holes in outer plates

Striking a balance

•Oversizing needed to facilitate

rotational motion

•Oversizing leads to radiation losses in copper plates

Rotation angle
(degrees)Freq. (GHz)Coupling coefficientUnloaded Quality
factor1809.2943.822154

Oversizing between 50 um and 70 um

Oversizing between 30 um and 50 um

Rotation angle (degrees)	Freq. (GHz)	Coupling coefficient	Unloaded Quality factor
180	9.293	4.54	2692

Conclusion

Current status

- Testing 2 different approaches for mechanical tuning in resonator prototypes
- Efficiently built and tested prototype based on rotational tuning (~9-13GHz)
- Rotational prototype quite promising: tunability of about 28%

□ Future goals

- Tuning at certain angles, working towards robust rotational tuning mechanism
- Design modifications for covering wide frequency range 10-20 GHz
- Cryogenic testing of the prototypes
- Build static prototype with superconducting rods/sails