

Mechanical tuning in Metamaterialinspired resonators

Gagandeep Kaur gagandeep.kaur@fysik.su.se ICHEP 2024 19 July 2024

Funding provided by:

1

The ALPHA Collaboration

The ALPHA Collaboration meeting at Yale University, September 25-26, 2023

Gagandeep Kaur 7/19/2024

ALPHA White paper: Phys. Rev. D 107, 055013 (2023) ²

Metamaterial

Negative µ

Controlling ε and μ

Negative ε and µ

Tech. Phys. 58, 1-24 (2013)

Wire Metamaterial: Controlling frequencies

Plasma frequency depends entirely on lattice geometry

$$
\omega_p^2 = \frac{ne^2}{\varepsilon_0 m_{eff}}
$$

$$
m_{eff} = \frac{\mu_0 \pi r^2 e^2 n}{2\pi} \ln(\frac{a}{r})
$$

Pendry et al.(1996) PhysRevLett.76.4773

Motivation behind designs: Plasma Haloscope

- Array of wires as effective medium
- Axion detection with tunable cryogenic plasma
- Axion mass matched to plasma frequency
- Metamaterial based detector
- Can in theory scan through a range of axion masses

Lawson et al. (2019), PRL

Motivation behind designs: WM filled resonator

$$
\frac{\omega_p^2}{c^2} = \frac{2\pi/a^2}{\ln\left(\frac{a}{2\pi r}\right) + F(1)}
$$

$$
Q \simeq \frac{2\mu_0 r}{\mu \delta} \left(\ln \left(\frac{a}{2\pi r} \right) + F(1) \right)
$$

Wire radius = 1 mm, wire period = 10 mm, 10x10 array

Rustam et al. (2022), PRB

Metamaterial-inspired Resonator prototypes

Optimizing designs

1. 3D mechanical model

2. Run CST/COMSOL simulations

3. Get the design manufactured

4. Assemble resonator in lab

5. VNA measurements

Critical steps

Optimization parameters:

- Losses
- Coupling strength
- Quality factor
- Tuning range

Static prototypes

Tunable prototype: First tuning mechanism

R&D at Stockholm University, guided by theory and simulations from the ITMO/St. Petersburg group (**R. Balafendiev, P. Belov**, M. Gorlach, et al.)

Translational design: Optimization

- Metal discontinuities causes mode mixing
- Symmetry of design is critical for uniform field distribution

Static design vs tunable: Quality factor: ~4500 for static \sim 1500 to 2500 for tunable designs

Translational prototype

- Lateral translation of rods
- Material of translational combs critical
- Still modifying to improve connectivity and avoid mode mixing

Rotational prototype: Design optimization

Credit: Rustam Balafendiev

¹³ *Gagandeep Kaur 7/19/2024*

Rotational prototype

•Sail-based, metamaterial-inspired resonator

•Copper conductors on a

rectangular lattice

•**Resonator dimensions:**

Smaller: 7.8cm X 7.8cm X 8cm Larger: 7.8cm X 7.8cm X 16cm

Transmission spectrum: Small prototype

Transmission spectrum: Large prototype

7.8cm X 7.8cm X 16cm

Comparing experiment with simulations

7/19/2024

Mode map (3D CST sims)

7.8cm X 7.8cm X 8cm 7.8cm X 7.8cm X 16cm 13.0 13.0 1.0 1.0 12.5 12.5 $12.0 -$ 12.0 Frequency (GHz) Frequency (GHz) 11.5 11.5 -0.8 -0.8 $11.0 -$ 11.0 10.5 $10.5 -0.6$ -0.6 TM 110 mode $10.0 \cdot$ $10.0 \cdot$ -0.4 0.4 $9.5 9.5$ TM 110 mode -0.2 0.2 9.0_{0}^{+} 9.0 $\frac{1}{6}$ 100 125 150 175 50 75 100 125 150 175 25 50 75 Ω 25 Rotation angle (degrees) Rotation angle (degrees)

TEM modes:

•Small prototype: 10 GHz, 12.5 GHz

7/19/2024

¹⁷ *Gagandeep Kaur* •Large prototype: 9.64 GHz, 10.71 GHz, 11.78 GHz, 12.86 GHz

7.8cm X 7.8cm X 8cm 7.8cm X 7.8cm X 16cm

• Good agreement between experiment and simulation for both

• Demonstrate about 28% tuning range for both small and large systems

TM 110 mode

2D field profile of Ez calculated with COMSOL

Credit: Rustam Balafendiev

Optimization and Technical challenges

Critical interface: **Oversizing** of holes in outer plates

Rod diameter: 2.5mm Size of holes in top plate: 2.55mm

7/19/2024

Optimization and Technical challenges

Critical interface: Oversizing of holes in outer plates

Striking a balance

•Oversizing needed to facilitate

rotational motion

•Oversizing leads to radiation losses in copper plates

Freq. (GHz) **Coupling coefficient Rotation angle Unloaded Quality** (degrees) factor 180 9.294 3.82 2154

Oversizing between 50 um and 70 um

Oversizing between 30 um and 50 um

Conclusion

❑ Current status

- Testing 2 different approaches for mechanical tuning in resonator prototypes
- Efficiently built and tested prototype based on rotational tuning (~9-13GHz)
- Rotational prototype quite promising: tunability of about 28%

❑ Future goals

- Tuning at certain angles, working towards robust rotational tuning mechanism
- Design modifications for covering wide frequency range 10-20 GHz
- Cryogenic testing of the prototypes
- Build static prototype with superconducting rods/sails