GEANT4 models for muonic atom processes, and proposed simulation package.

Ara N. Knaian (NK Labs, Acceleron) Sridhar Tripathy (UC Davis) Kevin R. Lynch (Fermilab)

Presentation at ICHEP 2024, Prague, 19th July 2024

- Stopped can undergo DIO, nuclear capture, muonic atom formation
- Accurately modelling MuAtom physics is essential.

Muon Catalyzed Fusion

Predominant channels:

- 1. $dd\mu$, $dt\mu$, $tt\mu$ (rate >10⁸)
- 2. Other processes like $pd\mu$, $pt\mu$ are not fruitful (rate ~10⁵)

Concept of µCF in comparison to thermonuclear fusion

Typical fusion reactions:

1. $dt\mu - > \alpha\mu + n$ (sticking) or $dt\mu - > \alpha + \mu + n$ (no sticking), yield: 14.1 MeV 2. $dd\mu - > He_3\mu + n$ (sticking) or $dd\mu - > He_3 + \mu + n$ (no sticking), yield: 3.3 MeV 3. $tt\mu - > n + n + \alpha\mu$ (sticking) or $tt\mu - > n + n + \alpha + \mu$ (no sticking), yield: 11.3 MeV

Experimental design

- Diamond anvil cell, ~10⁵ bar, 7-1500 K
- Veto counters, electron detectors, neutron detectors
- DT mixture target upto 3 LHD
- Muon beam through a window

Goals

This presentation

 Measure key µCF rate and efficiency parameters at higher temperatures and pressures than have been explored previously Create high-fidelity physics process of muon-catalyzed fusion for GEANT4

Process models for GEANT4

- Add muon catalyzed fusion and associated muonic atom processes to GEANT4.
- Be a function of: (at least)
 - * Temperature
 - * Density
 - * Mixture fraction of P, D, and T
 - * Impurity concentration
- Return reasonably accurate yields, with reasonable matching to experimental data
- Include the time structure, and spatial extent of the reaction.

Process models for GEANT4

Processes we have implemented:

- G4MuonMinusAtomicCapture :Modified
- EM processes to act on :Modified muonic atoms
- G4MuonicAtomTransfer :New
- G4MuonicAtomSpinFlip :New
- G4MuonCatalyzedDDFusion :New
- G4MuonCatalyzedDTFusion :New
- G4MuonCatalyzedTTFusion :New
- G4MuonStripping

:New

MuonicAtomTransfer

199	
200	// Using Q1S formula, compute relative probability of having muonic deuterium vs. muonic tritium at end of deexcitation cascade
201	// Using data-fit Q1S formula from V.R. Bom 2005
202	// q1s = 1/(1 + 7.2*C_t)
203	// p_dmu = C_d*q1s
204	// p_tmu = 1 - p_dmu
205	
206	G4double q1s = 1/(1 + 2.9 * tritiumMoleFraction);
207	G4double deuteriumProbability = deuteriumMoleFraction*q1s;

$$q_{1S} = \frac{\lambda_{\text{dex}}}{\lambda_{\text{dex}} + \lambda_{\text{tr}}}.$$

$$\lambda_{dex} = de$$
-excitation rate
 $\lambda_{tr} = transfer rate$

Patch for muonic atoms to experience EM processes

	💠 2 💶 💷 source/processes/electromagnetic/standard/src/G4ionIonisation.cc 🖸				
	00 -103,7 +103,7 00 G4ionIonisation::~G4ionIonisation()				
103 104	<pre>G4bool G4ionIonisation::IsApplicable(const G4ParticleDefinition& p) { </pre>	103 104	G4bool G4ionIonisation::IsApplicable(const G4ParticleDefinition& p) {		
105	return (p.GetPuGCharge() != 0.0 && !p.isShortLived() &&	105	return (p.getPUGCnarge() != 0.0 && !p.isShortLived() &&		
106	<pre>- p.6etParticleType() == "nucleus");</pre>	106	<pre>+ ((p.GetParticleType() == "nucleus") (p.GetParticleType() == "MuonicAtom")));</pre>		
107 108	}	107 108	}		
109	//ooc000000ccococ00000ccocooc00000ccocooc00 000cco	109	//coo000000ccocoo00000ccocoo00000ccocoo00		
	v 2 source/processes/electromagnetic/utils/src/G4VEnergyLossProcess.cc				
	. 🝿 -383,7 +383,7 🝿 G4VEnergyLossProcess::PreparePhysicsTable(const G4ParticleDefinition& part)				
383	// Are particle defined?	383	// Are particle defined?		
384 385	<pre>if(!particle) { particle = ∂ }</pre>	384 385	<pre>if(!particle) { particle = ∂ }</pre>		
386	<pre>- if(part.GetParticleType() == "nucleus") {</pre>	386	<pre>+ if ((part.GetParticleType() == "nucleus") (part.GetParticleType() == "MuonicAtom")) {</pre>		
387		387			
388	G4String pname = part.GetParticleName();	388	G4String pname = part.GetParticleName();		
389	if(pname != "deuteron" && pname != "triton" &&	389	if(pname != "deuteron" && pname != "triton" &&		

Patch for muonic atoms to experience EM processes

✓ ☆ 7 ■■■■■ source/processes/electromagnetic/utils/src/G4ionEffectiveCharge.cc 口				
	@@ -97,6 +97,13 @@ G4double G4ionEffectiveCharge::EffectiveCharge(const G4ParticleDefinition* p,			
97 98 99	G4double mass = p->GetPDGMass(); G4double charge = p->GetPDGCharge();	97 98 99	G4double mass = p->GetPDGMass(); G4double charge = p->GetPDGCharge();	
		100 101 102 103 104 105 106	<pre>+ + + // Muon reduces charge of muonic atom by one + // TODO is this the right/only place to do this??? + if (p->GetParticleType() == "MuonicAtom") { + charge -= 1.0; + } +</pre>	
100 101 102	G4double Zi = charge*inveplus; chargeCorrection = 1.0;	107 108 109	G4double Zi = charge*inveplus; chargeCorrection = 1.0;	

G4MuonicAtomTransfer

- Uses temperature-dependent transfer rates between H, D, T, He3, and He4
- Rates to hydrogen isotopes:
 - A. Adamczak, "Differential cross sections for muonic atom scattering from hydrogenic molecules", PRA 74, 042718 (2006)
 - \circ $\,$ Newly computed by A. Adamczak for this project from 5 1500K $\,$
- Rates to helium isotopes:
 - A. V. Kravtsov; A. I. Mikhailov (2000). Temperature dependence of the forma
 - tion rates of hydrogen-helium mesic molecules in collisions of slow hydrogen ato
 - \circ ms with helium. , 90(1), 45-49.
 - Tabulated from 15 500K
- Rates for atoms with Z>3 based on scaling of data collected by FAMU collaboration for transfer to oxygen
 - \circ $\,$ Scaling with temperature, density, and atomic number difference

 $d\mu(1s) + t \rightarrow t\mu(1s) + d$

G4MuonicAtomSpinFlip

- Temperature-dependent spin flip modeling is important for accurate time spectra in D-D experiments
- Spin flip rates for H,D,T:
 - A. Adamczak, "Differential cross sections for muonic atom scattering from hydrogenic molecules", PRA 74, 042718 (2006)
 - Newly computed by A. Adamczak for this project from 5 1500K
- Spin flip for Z>1 not modelled

$d\mu(\uparrow\uparrow) + d \rightarrow d\mu(\uparrow\downarrow) + d$

G4MuonCatalyzedDTFusion

- Fusion rate depends on temperature and spin of muonic atom
- Rates from
 - Faifman, M.P., Strizh, T.A., Armour, E.A.G. et. al, "Quadrupole corrections to matrix elements of transitions in resonant reactions of muonic molecule formation, Hyperfine Interact 101, 179–189 (1996)"
- Value for initial sticking (0.00857) from
 - M. Kamimura, Y. Kino, T. Yamashite, "Comprehensive study of muon-catalyzed nuclear reaction processes in the dtμ molecule", 2023 (Arxiv draft)
- Nonlinear density dependence not modeled
- State of matter effects not modeled

1. $dt\mu - > \alpha\mu + n$ (sticking) or $dt\mu - > \alpha + \mu + n$ (no sticking), yield: 14.1 MeV

G4MuonStripping

- Stripping of muon from muonic alpha cycling back to fusion cycle is vital.
- Muon stripping in ground-state MuHe3 and MuHe4 due to collisional ionization and transfer processes
- Striping cross-sections are estimated by scaling the data of p-He collisions for muon's mass following the approach given in

C.D. Stodden, H.J. Monkhurst, K. Szalewicz, T.G. Winter, Physical Review A, Volume 4, Number 3, February 1, 1990, p. 1281

• Excited state of muonic alpha not modelled yet.

Validation of DD fusion

Example for Validation

• Geometry and Parameters:

Target volume: User-specific HDT mixture in shape of a box.

Fuel Temp: 300-1500 K

Fuel Density: 0.3-1.5 LHD

T2 concentration: 18-70 %

• Particle Gun:

Muon beam: beam energy, type (collimated/Gaussian, etc.), direction, can be provided in the PrimaryGeneratorAction or Messenger classes via macro.

• MuonicAtomPhysics:

The example uses QGSP_BIC & user defined G4VPhysicsConstructor for muonic atoms.

• Neutron stops in the detector volumes surrounding the target are identifiers for fusion processes. Muon veto and decay electron detectors to be added.

Validation: Temp vs Fusion Yield

- Observed fusion yield for a nominal density and 35% $\rm T_{_2}$ concentration, The model has been simulated b/w 300-1400 K
- Yamashita et al, Scientific Reports volume 12, Article number: 6393 (2022)

Validation: Muonic Atom Transfer rate

• Transfer of muonic atom to another isotope observed with respect to different temperature and T2 concentration.

Validation: Fusion Yield vs Temp, T2 Concentration.

60 - 100 Tritium Concentration (Ct)% 50 - 80 40 - 60 30 40 20 -

1000

1200

1400

800

T (Kelvin)

600

400

Simulation yield with T and Ct

Summary

- Several processes modelled for muonic atom and muon catalyzed fusion based on theoretical and experimental studies from literature.
- Working with G4 hadronic group for integration.
- Validation being carried out for simulation vs archival data, fusion yield, sticking fraction, etc.
- Variation with temperature, density, and concentrations
- The dMu/DT collaboration is studying fusion parameters at a relatively higher temperature, 7–1500 K and pressure, ~10⁵ bar

Thank You!

Competition Among Several Processes

Processes	Rate of Reactions at 300K, 1 LHD
Muon decay rate (λ_0)	0.45x 10 ⁶ s ⁻¹
Atomic Capture (λ _a)	4 x 10 ¹² s ⁻¹
Isotopic Exchange (λ _{dt})	2.8 x 10 ⁸ s ⁻¹
HF Interactions	~ 10 ⁷ s ⁻¹
Molecule Formation ($\lambda_{dt_{i}}$)	10 ⁸ -10 ⁹ s ⁻¹
Fusion Rates($\lambda^{f}_{dt_{\mu}}$)	10 ¹² s ⁻¹
Muon Cycling Rates (λ_{c})	~ 10 ⁸ s ⁻¹

• With the cross-sections and reaction rates given, Geant4 calculates the interaction-lengths step by step and carries out the simulation. • The temp. and density of the gas volume affects the parameters significantly, however currently 300K data is taken for simulation. • It is planned to implement the cross-section tables normal atoms with similar atomic properties for Aµ, like the case of $\alpha\mu$ →⁴H.

Ref: Annu. Rev. Nucl. Part. Sci. 1989.39: 311-56

Cost of electricity versus physics parameters

Cost of baseload power by source, \$/kWh (1)

Coal	\$0.089
Biomass	\$0.077
Nuclear fission	\$0.071
Gas:	\$0.043

Target operating point:

Fusion (?): \$0.025

(1) Levelized Costs of New Generation Resources in the Annual Energy Outlook 2023, US Energy Information Administration, Document #AEO2023

- Diamond Anvil Cell: DT sample, 2.5 mm diameter, 0.5 mm thick when compressed, 1 mg at 3 LHD
- Veto counters: plastic scintillators, Neutron detectors: EJ309 liquid scintillators, e det: thin flat plastic scintillators, SiPMs
- Liquid Hydrogen Density = 4.25e+22 atoms/c
- Optical system for pressure monitoring