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* In a collision event, charged particles leave energy deposits in the detector. /

Track reconstruction recreates particle trajectories from these deposits (hits). ATLAS TDR 030

€ 300 ' -

* At (u) = 200, need to reconstruct O(1000) target particles from 400k hits/BX. é ssob- ?rmjmse';ngfsgnnevems .«"_;
. . . . . 2 I [0 Total ID Run 2 Reconstruction .

Huge combinatorics, most expensive process in offline event reco. 8 g0 Tou MeAaconiusion E
2 F --@-- SiTrack Finding (ITk) .

* HEP community seeks to develop hardware-accelerated, ML-based tracking é i e dimsromal e g = .
algorithms.! = 100p ' Pty
so- . I".____‘__.--_-_‘_'_'.'.'.'.'.'.ZZ" 3 =

* We build a machine learning pipeline based on Graph Neural Network (GNN) 04@3 T
0 50 100 150 200

for track finding under HL-LHC condition ({#) = 200).

* In this presentation, we discuss
*An overview of our machine learning pipeline,
*A comparison in tracking performance with the state-of-the-art,

*Throughput optimizations.
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https://link.springer.com/article/10.1007/s41781-018-0018-8
https://cds.cern.ch/record/2285585?ln=en

A graph-based approach to tracking

\‘% -

Hits: Clusters of energy
deposits in detector

Graph: A collection of nodes
and connecting edges.

Graph with edges classified

Detector hits

* Represent each collision event as a graph, each hit as a node.

Graph

* Nodes are connected by edges, representing the possibility of being consecutive hits on the
same track.

* Classify edges with a pattern recognition algorithm.

19.07.24 Geometric Deep Learning for ITk - ICHEP 2024 3



The GNNA4ITk reconstruction chain
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* Construct a graph from hits.

* Classify edges with a Graph Neural Network (GNN).

« Segment the graph to build track candidates.

* Fittrack candidates and evaluate track reconstruction performance.
 Gitrepo, documentation.

19.07.24 Geometric Deep Learning for ITk - ICHEP 2024 4


https://gitlab.cern.ch/gnn4itkteam/commonframework
https://atlas-gnn-tracking.docs.cern.ch/

Graph construction: Module Map

* Data driven approach: Build a list of connections between detector modules from 90k
simulated events.

* Inference: Connect modules that are simultaneously hit if there is a connection between them
in the module map.

Particles leaving hits Module map creation Graph creation
ﬁ{ ' T |2
12 1 2 - 3
Ne | 2 > |
A6 Done once S | = For event reconstruction
L 2 5
- > -
e ' 4 =] 7
< 23013 5 |==| 6
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Graph construction: Metric learning

* The idea: Embed hit features to a high-dimensional space; consecutive hits from a track are near
each other (in Euclidean distance d), otherwise, far away.

* Inference: Each hit connected to all other hits in a hypersphere centered on the hit with a radius r.

* Both methods create graphs containing >99% of all true edges.

Embed into learned Connect all space points All space point pairs
lat@p_t_§pace Wlth_lp_ radiusr Jom_e_q_ln_tp graph
/”’ \A /"’ \\\A /” i \‘
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GNN edge classification ok

Graphs contain many fake edges (see figure). Eliminate K
fakes while preserving true edges with a GNN

Battaglia, Peter, et al.

e(l)‘z Interaction network

k+1 _ pk+1k yok
vy = ¢y (vg, Zeg;)

vl-k node vector

Encode nodes and edge features. '
e;; edge vector

o k . .
Aggregate edge vectors, acting as messages V3 v, atiterationk
between nodes.

Update node features with aggregated message.
Update edge features using updated node
features.

Repeat n times steps 2 and 3.

Compute an edge score representing the
probability of being a true edge.

Input graph (left) and classified graph (right). Fake = blue. True = orange
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https://arxiv.org/abs/1612.00222

Graph segmentation

Connected Components

O —9o—° oo ° o—o —©

Label simple
candidates

Classified edges Loose score cut

Track #1

Walkthrough

Walk through paths from Assign longest path
) as candidate
count length L

» 2-step sequence: Connected components and walkthrough:

1. Use CCtoisolate subgraphs with no branching.

2. On subgraphs with branching, use walkthrough to separate track candidates (optional).

* Each track candidate is a list of hits => extract track parameters by a track fit and match to truth

particles for physics performance evaluation
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Tracking performance
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Track reconstruction efficiency

ATL-SOFT-PROC-2023-047
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The GNN gives competitive performance compared to the Combinatorial Kalman Filter (CKF).
Similar efficiency in the central and forward regions, worse around || = 2. The efficiency correlates
with particle n, suggesting the transition region is particularly difficult for the GNN.
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https://cds.cern.ch/record/2882507?ln=en

Impact parameter resolution
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Parameter resolution reflects how well a track represents the particle characteristics. (Left) transverse
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(d0) and longitudinal (z0) impact parameter resolution vs pI. Overall good agreement.

More performance plots in back-up
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https://cds.cern.ch/record/2882507?ln=en

Extension to Event Filter
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Optimization with quantization

S. Dittmeier - ATL-DAQ-SLIDE-2024-027

* Use case: Event Filter on FPGAs - Compress models T :

. ATLAS Simulation Preliminary ]

i i< - - “hit- i 1 _ [ Graph construction w/ Metric Learnin 1

to arbltra ry preC|S|0n, e'g' 2 ) 4 ) 8 blt' quantlzatlon )U'UU') L \/Ip: HTet/, r:, (1) = ‘2()(t], pl’imariesgﬁ and soft interactions ]

. e . . e I ntization Aware Trainin |

« Post-training quantization works poorly > account for & [ Quneon e Trinie _
= 0.004 -

accuracy loss while training. A e T n:

Y L 5 |

. . . .. . . £ 0.003 .

* With quantization-aware training, effect of precision L W B B
reduction included in the loss function. 2 000 f : =4 e o

. .re . . z & b, = [8. 4. 8] bit, b, = [4. 4. 4] bit

* Forward pass in low and specified precision. 5 % b, = [8. 4, 8] bit, b, = [6, 4, 6] bit ]

) . o 0.001 = « b, = [8, 2 8] bit, b, = [6, 4, 6] bit ]

* Loss computation and model update in full precision. _ bu = [6. 4, 6] bit, b, = [6. 4, 6] bit ]

L ~&~- PyTorch reference i
* Achieve similar performance as default 32-bit T i T T T

Bit Operations
precision W|th up 1(0) 0(1 OO) fewer b|‘t operations. b,,: bit width on the first layer, hidden layers, and the last layer of weight matrix

b,: bit width on the first, hidden, and the last activation function
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https://cds.cern.ch/record/2888383/

Optimization with lterative Pruning

S. Dittmeier - ATL-DAO-SLIDE-2024-027

* The idea: encourage model weights to take small

T : ' G hoo |
. [ ATLAS Simulation Preliminar
numerical values, remove those under a threshold. 005 | Graph construction w;/ Metric Leamingy ]
T P /6 = 14TeV, ¢, (p) = 200, primaries ¢t and soft interactions i
* Control model weights with L1 regularization. Prune 5 | ST VP b =164, 6160 b= (6.4, 6] bit, L factor A= 1107 _
1 1 . % 0.004 B 36.0% 0.0% .
iteratively: R et S bobahh A iy g~ --~-]
. . $ ,,8;’-200 A
1. Train a network to a certain performance, £ 0.003 wﬂgd%!;b e .
2. Remove some neurons/channels of the network if = 3 o
. = L 50,09,91-4% 2
the weight falls below a threshold, 5 000 -
. . . i &
3. Fine-tune (FT) or retrain model by rewinding the - = grags ¥ Llunstucured BT
. 0 I 67.2% L1 unstructured LRR 7]
learning rate (LRR). I ¥ L1 structured LRR
- I | | —@— PyTorch reference
* Can prune model to 1/56 (98% sparsity) the sizeand """ 107 W
. . . it Operations
maintain the same level of performance with FT: fine-tuning
unstructured pruning and LRR. LRR: learning-rate rewind

Unstructured pruning: Set small weights to 0 in weight matrix.
Structured pruning: Remove a neuron of the network.
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https://cds.cern.ch/record/2888383/

Summary and prospects

Overview of a complete machine learning pipeline for track reconstruction.

An apples-to-apples comparison of tracking performance to the default
Combinatorial Kalman Filter showing good performance.

Promising computational optimization with quantization and pruning for FPGAs and
accelerated GPU inference.

Next steps:
* Full-chain inference in Athena.
Refine pipeline models to improve performance.
Optimize the throughput of the entire pipeline by quantization, pruning, and compilation.
Study robustness against misalignment and dead modules.
Generalization to other processes: single particles, Z’—jets, long-lived particles, etc.
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Back-ups
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Efficiency in dense environment

Efficiency

19.07.24
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Tracking efficiency inside jets as function of (left) the angular separation of the track from jet axis (4R) and
(right) jet pr. The GNN performance is very close to the CKF and remains constant wrt both p;y and 4R. No
degradation is observed with increasing track density (towards the jet core and with higher jet py).
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The number of (left) pixel hits, (center) SCT hits, and (right) innermost pixel hits as a function of track n. The
number of (innermost) pixel hits shows very good agreement between CKF and GNN tracks. Innermost pixel
hits are important in constraining impact parameters (dg, Zg), expect good impact parameter resolution. The
difference in SCT is well-understood: Because the GNN builds tracks from space points, it ignores single-

cluster hits in the SCT by design.
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Track pT resolution

Hits in the SCT are effective in constraining track pl.
GNN tracks have lower SCT hit counts than CKF tracks,

hence lower pT resolution.

19.07.24
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Generalization to single particle samples

Tracking efficiency of muon and electron at pr = 10 GeV'.

Muons do not significantly undergo Bremsstrahlung and
hadronic interaction, should have close to 100%

efficiency, which is observed. Electrons are significantly
affected by Bremsstrahlung and multiple scattering, but

still attain good efficiency.
Note: GNN models are not train on electron tracks, but

still able to reconstruct them at satisfactory efficiency
levels.
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Integration into ATLAS analysis
software
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GNNTrackMaker

Currently, Athena implements the CKF in the
ITkSiSPTrackFinder class.

Integrate the GNN chain via a
GNNTrackMaker class.

Goal: Input all space points from an event,

1. Build track candidates
2. Process track candidates.

* Implemented in Athena Rel24, code here.

I

ITkPixelClusterization

l

v

ResolvedTracksTruthCollectionSelector

ITkSiTrackerSpacePointFinder

|

ITkPRD_MultiTruthMakerSi

v

hY

GNNTrackMaker ITkSiSpTrackFinder
\ /
\ /

SiSPSeededTracksDetailedTruthMaker

4

SiSPSeededTracksTruthCollectionSelector

A4

ITkAmbiguityScore

A4

ITkAmbiguitySolver

A 4

ResolvedTracksDetailedTruthMaker
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ITkTrackCollectionMerger

Y

CombinedITkTracksDetailedTruthMaker

A 4

CombinedITkTracksTruthCollectionSelector

Y

TrackSlimmer

v

ITkTrackParticleCnvAlg

Y

InDetPriVxFinder


https://gitlab.cern.ch/atlas/athena/-/tree/main/InnerDetector/InDetGNNTracking

The GNNTrackMaker

* IGNNTrackReaderTool only used to test
ITrackFitter.

* Test track processing with CKF track
candidates

1. Find tracks with CKF and save to CSV

2. Read tracks from CSV and process,
compare to CKF performance

* Next step: GNNTrackFinder. Convert
trained models to ONNX runtime. (WIP)
1. Build graph from space points
2. Classify edges

3. Build tracks by segmenting graphs with
fake edges removed

19.07.24 Geometric Deep Learning for ITk - ICHEP 2024

AthenaBaseComps

@AU)ReentrantAlgorimmw

A
InnerDetector)
InDetRecAlgs

(©) SiSPGNNTrackMaker ‘
o InputContainer: Pixel SpacePoints
o InputContainer: SCT SpacePoints
o OutputContainer: Tracks

ses Uses ses

InDetRecTools )\

lnDetRecTooIlnterfaces\

K

@ IGNNTrackReaderTool

le getTracks(runNumber, eventNumber, tracks)“

Y
@ ISeedFitter ‘

: o fit(spacepoints) \

A
@ ITrackFitter

le fit(prepRawSet, params, ...)7

Read track candidates from

CSV files

Estimate initial
track params

23




R [mm]

Metric

Data driven approach: Module map (@) { o } §

The idea: Build a list of
detector module triplets
from truth information: a
connection A—B—C s
added if a particle passes
sequentially through
them.

Construction: From
100k events, build all
combinations of
sequential triplets.

Inference: Connect a
hit triplet a—b—c |if
abc contained in MM.
Apply these geometric
cuts to reduce possible
fakes.

Register/update
geometric cuts.

1400 - ATLAS Simulation | . 29 =2Zpy — TRy X (%)
[ ] A
o Inclined Duals kb : w‘\\'// * bsiope = A—f
Connections added: ”W)"// / " 8= daz = bm Ay _ Ay, Ay
1000 ' "‘M,g’r" * A =Mpz —Nm A== =12 =23
- . n=20 - 1>2->3 /”’“’"\' Ax  Axy;  Axp3
800, ' P B 4 "4 —_— Az _ A8z, _ Azp3
600 ] 3->4->5 . Ar Ary, Ary3
! 4->5->6 * 2= 2p ~ X (5)
400 ‘ _4¢
PP of TR0 oo B0 gt RS TN SiCl el \ * ¢S|°P°_E
200 mirt I O e ST n=40 * Ap=n2 —dm
RS s LTI N W By * An=Mp2 — N

% 500 1000 1500 2000 2500 3000 3500

Resulting graphs have (N,) = 1.9x10°, contains 99.5% all true edges.
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Machine learning approach: Metric learning

« ML graphs are too large for later steps => Train a _

simple NN to classify edges from node features.

Module map 1.9x10° 99.5%
* Resultin graph of (N,) = 1.0x10°, contains Metric learning 1.0x10° 99.3%
99.3% true edges.
Metric Learmning

X12 = (x1'xz)T/ Y12 = ¢(x12),
li, = Y121logyi, + (1 — P15) log(1 — y43)

g g > Radius > Hinge

To) To) Graph Loss
Cross

E/ S GNMN

Loss
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Heterogeneous data

r [mm]

* Strip space points have low resolution compared
to pixel.

* Address by passing individual cluster information
to the GNN

* Strip: (Tep, Ter1, Xc11, Teiz) Xci2)» X: cluster info

* Pixel: (rsp, Yel, Xcbb Yol xd)

* Significant improvement in purity in the strip E
barrel at the same efficiency.

Double strip sensor planes in barrel module
Two strips fired by a particle in brown

Where did the particle hit the inner plane?

Default hits:

Poor o, ~1-3 cm
‘“ : (was limiting GNN performance)
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Event filter in HL-LHC

i, | * [In HL-LHC, Event Filter receives 10 times the LO
| [&::::f::,gm Nrmg:,] readout rate compared to Run 3 condition.
: (CiFex ] Endcap | [MDT Trigg
; woid e )  ATLAS has demonstrators for CPU-, GPU-, and
§ e —_ FPGA-based EF tracking.
i) —===J .« Demonstrate the viability of GNN-based
e oo e tracking on FPGA.
i LHC Run 3 HL-LHC
S |
Dati,ow L LO trigger accept 100 kHz 1 MHz
ﬁ ;l:'ifé':r ][ ﬁ::,’:,%?_ ] e J 4:0utputdata (10 kHz)
b Event Filter accept 1 kHz 10 kHz
,,; ATLAS-TDR-029-ADD-1
[ ptFm Event size 1.5 MB 4.6 MB
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https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf

