PSR
. : Q‘
E .~ _\" g

Studies on track finding algorithms based on
machine learning with CPU, GPU and FPGA

Maria Carnesale on behalf of the ATLAS collaboration
ICHEP 2024

. HL-LHC ATLAS trigger system
Overview

. Studying the performance of ML-based tracking algorithms on different architectures (CPU /
GPU / FPGA)

- Discuss possibility to include ML algorithms for muon tracking at ATLAS muon High Level
Trigger (HLT)

. At the HL-LHC, an heterogeneous high-level triggering farm is considered, compromise
between performance, costs, power-consumption

- Performance studies on standalone G4 simulation of a generic setup similar to the

spectrometer and the ATLAS New Small Wheels

» Models tested are
- Dense NN (DNN) for cluster reconstruction on strip detectors
- Convolutional NN (CNN) and Recurrent NN (RNN) for pattern recognition

How do commercial
FPGA perform?

VCKs000 ~ ————> B} il 10 kHz

It is an Al development card,
more versatile than the other
two

Designed for financial
computing, machine learning,
computational storage, and
data search and analytics

Designed for machine learning
inference, video transcoding, and
database search & analytics

https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://www.xilinx.com/products/boards-and-kits/vck5000.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

ML algorithms for muon pattern recognition

- Algorithms for cluster reconstruction in MicroMegas (MM) and small Thin Gas Chambers .)("x"'
(sTGC) like detectors and pattern finding
* To speed up R&D part of the study, a toy model is simulated 1l
:ﬁec
quad quad

Simple MC standalone for a generic strip detector, G4 fullsim

- layers, b-field, background rate can be set

. 4 samples produced with different noise rates: 2, 5, 10, 15 kHz/ cm?

inspired by NSW HL-LHC rates

- Effect from correlated background is also emulated
|B|=1T

0.1m

1.4 m 1.4 m

Rirack

quad quad
beam line

Simulated NSW rates at HL-LHC (NSW TDR)

c<\25T!llIllllll'lllllllIIIIIIIIIIll'llll!-
: NSW Run-3 background hit rates

—#— Based on CSC & TGC rates

| I FLUGG TGC Run-3 MC, photons
- FLUGG TGC Run-3 MC, neutrons §
[] FLUGG TGC Run-3 MC, charged i
|] FLuGG TGC Run-3 MC, electrons

: Run-3 prédictions
~ L=7.0x10*Hzem*
2808 bunches

10—

IIIU]IIII]IIIIIUIII

lll L

L Ll 1 l Ll 1 Ll L 1l Ll 1l
100 150

200 250 300 350 400 450
Radius (cm)

https://cds.cern.ch/record/1552862?ln=it

ML algorithms tested on CPU/GPU/FPGA

-—
Float model [l]

- Study of inference time and performance on different architectures:
. CPU: using ONNX

- Open Neural Network Exchange: open source framework that optimizes the
ONNX runtime engine TensorRT EWE
usage of CPU resources

- GPU: using tensor flow and tensorRT

- Framework produced by NVIDIA to run optimized inference on GPU
Optimised CPU inference Optimised GPU inference

- FPGA: using Vitis-Al workflow provided by Xilinx for inference acceleration

pruning .. compilation
E (Optlonal) quantlzatlon
°
e ® | @ 100101010010
QL _» * e o 110010101011
. oo e e [° 001001010100
| e ® timizes 101100101010
¢ » » B ° + E ° » + 110010010101
¢ k © e 001011001010
Dense Neural Networ R =) uantization | Neural Network Code-generator _ :
i (Less nUI:"bef gf param) Pruned Neural Network (Les(s)b;st;:ft:aram) L) (E:NTZ) 0] it ot
Al Optimizer (FP32) Al Quantizer _ Al Combil .
float (pruned) . S FPGA inference
float model model quantized model

https://onnx.ai
https://developer.nvidia.com/tensorrt
https://www.amd.com/en.html

Cluster reconstruction with DNN

Current cluster position reconstruction in NSW with

different algorithmes:

Simple DNN for hit position reconstruction

- NN architecture

1.

, input: | [(?, 11)]
. ! t 1! I tL
centroid n? (NSW TDR) ,LlTP C) P APy e utput: | 12, 11)]
z ri N VZ
| (N i
~ . input: | (?, 11)
Z Strips qstrip ‘xstrip Zp o e t, X dense: Dense output: | (?, 40)
xcluste, = 7 (2.5 mm
tot _ /’% . ./ s input: | (?, 40)
X dense_1: Dense
Xhalf output: | (?, 20)
Cha“enges dense 2: Dense nput: | (2, 20)
output: | (?, 1)

Resolution depends on incidence angle. 2.“Correlated” background

A simple DNN O(50k parameters and 20 input) improves
the resolution around up to 50% wrt centroid method

Different tests performed:

* Test on the trained model (floating-point

model) with GPU
* Test on a

* Test of the quantized model on the FPGA

Arbitrary

Input variables:

« cluster size
cluster theta
strips charge
strips time
strips position

Label: track hit position

Y
- ATLAS Preliminary 1 Float-point model
B] Quantized model]

4l 1 FPGA (VCK5000) _

3 _

o B 3 _

1 _

—(%.OO -0.75 -0.50 -0.25 0.00 0.25

5

Residuals [mm]

W XILINX

a VITIS.

| Al

Tested using Vitis-Al workflow

Small resolution degradation after

quantisation

https://cds.cern.ch/record/1552862?ln=it

Pattern recognition with RNN

* Pattern recognition to discriminate muons hits from

y | p 1 Hough space background hits exploiting info throughout layers
£0 co * Standard current alg: Hough Transform
p1 C1 * Each curve in the Hough space represents the family of
P2 po [lines passing through a reconstructed point
0 p3 L * We define a 2D histogram in the Hough space
o, L * Segments are represented by maxima (p,, 6,)
= ' - https:/doi.org/10.1088/1748-0221/19/06/P06029
. 6o 0 o n_ -
p=Xx-cos@+y-send § - éa.{;l_f?sﬂs.s . 0 Etri(re:(iesi?r211Mr§STrack Building -
107 November 2022 7 Precision Segment Making =
* Not optimized for NSW reconstruction: . i e .
* 2D histogram binning optimization = 5%?%“3 -
* Choice of cut on number of hits in maxima 10° ;%uﬂ% . —
* Large number of fakes with high occupancy B it ime ;
* Time increase with occupancy 104? +_°__D_ C -
10 2
Implementing new machine learning algorithm 1025 llllllllllllllllllllllllllll . —

RNN 6 Processing time per Call [ms]

https://doi.org/10.1016/S0734-189X(88)80033-1
https://doi.org/10.1088/1748-0221/19/06/P06029

Pattern recognition with RNN

Hits probability

- RNN are optimized to identify sequences, and work with sparse data
- Results on the standalone G4 sim for all the levels of bakcground
- cluster position reconstructed with DNN

Input variables: 2D vector with hits position in a layer (using padding) for each layer
[.abel: bool variable identifying layers with track hits + vector with info on hit association to a track

0 —background hits
1 —>muon track hits

n > 1 | 1
() (@) : : '
.-E 1 :_ .. C | :
— I . . — ——e—— RNN, background rate = 2 KHz/cm? :
S F - Signal ATLAS Preliminar Q - s Ko ;
LL] [y o O 9___.__T_':;:.__B_N.N1hagkgrqund_r_a_te_-_;_f_i.K_H_z/__qm _____________________ e NN
— |:| BaCkg round 2 = "~ | ——e—— RNN, background rate = 10 KHz/cm?
— 1 5 KHZ/cm “q—) B : RNN, background rate = 15 KHz/cm?
| v Hough Transform, back:ground rate = 2 KHz/cm? :
10_1 e AR i O 8 -"'V.HoughTransform,backgroundrate:SKHz/cm2 _____ Y""‘ __________________________
— : v Hough Transform, back:ground rate = 10 KHz/cm? :
[| ' Hough Transform, background rate = 15 KHz/em?
- - ' v
- O A e e S e R .
10—2 ... |

0.6

SO S WU

0.4 A TLAS Prellmmary """"""""""""""" R

10—4 PP PP B Sy IO | | | | | | | |
0-3 0.8 0.85

o o1 02 03 04 05 06 07 08 09 1]] L
RNNscore 7 Comparison with HT alg rejection

| I I
0.9 0.95 1

_

Hits probability

Hits probability

»

Hits probability

2

?

f

?

Time
distributed

Time
distributed

Time
distributed

?

Time
distributed

Layer

Layer

Layer

...........

~

Layer

Pattern recognition with RNN

Batch size 1 |Inference time (s) |CPU load/core| GPU load
- Measurement of inference time VS batch_size on CPU and GPU

C':;:;;(’re 1.5-1073 100 % . Using ONNX for CPU optimization
- Using TensorRT for GPU optimization

CPU 10 core 1.10-3 100 %
ONNX
, - For small batch size CPUs with ONNX are preferable
GPU TensorRT 1-10" 23 %

- TensorRT best at optimizing GPU usage at large batch sizes

- Latency per event on GPU with TensorRT ~ 10us for

Batch size 1000 | Inference time (s) |CPU load/core| GPU load .
batch size ~ 4096

CPU1core 25.10-! 100 % - CPUs and GPUs are already within HLT requirements
ONNX
(e | 1107 100%
- Total Parameters: 1.3M
GPU TensorRT 21072 50 % - Also tested on different models with different #parameters
(x1.6 and x2.5 parameters)
(Batch size - number of features set processed in parallel) . Inference time increases up to 25 %

. It was supposed to be possible to include it in the Vitis-Al workflow
- Could work with the hlsgml workflow (studies ongoing)

8

CNN for pattern recognition

- RNN models not supported for FPGA inference by Xilinx (for the moment)

- To test ML algs for pattern recognition — development of convolutional
neural networks

- Using same dataset as for RNN without the clusterization step —images
built directly from firing strips

Input Image CNN Output image

3000x16 pixels

3000x16 pixels

CNN — pre-processing step to built images (to be estimated)

Not ideal for trigger — existing algs working directly on sparse data
(RNN)

Entries

Efficiency

107 :
106
10°
104
103
102

10! 3

10°

ATLAS Preliminary Signal
Background
-0.2 O.lO 0.'2 0.'4 0.'6 0f8 l.lO 1.2
CNN score

-
o
|

0.9 -

0.8 -

0.7 -

ATLAS Preliminary

Quantized model on u50
—— Quantized model on CPU
— Floating-point model on CPU

0.6
0.95

0.96 0.97 0.98 0.99 1.00
Rejection

Inference time [ms]

Timing and performance on CPU/GPU/FPGA

- DNN and CNN models successfully tested on CPU, GPU and several FPGAs
- Comparing CPU (ONNX) / GPU (TensorRT) / FPGA (Vitis Al) for DNN and CNN inference
- Batch size is ~ fixed in the case of the FPGA, free for CPU/GPU
- VCK5000 can operate with batch sizes 4,6,8
- FPGA times are not a simulation, are real processing times obtained on the U5o0, U250 and Versal VCK5000

_I I I ' ' L ' ' ' LN - — =T T T T T T T 1] T T T T T T 1] = v
. ATLAS Simulation Preliminary g \C;‘-(I:rléélT%nggrsl?Jvc é | ATLAS Simulation Preliminary + GPU, TensorRT i X“_INX
10 Toy detector, DNN model % U50 | o | Toy detector, CNN model i tljggs.al, DPUGpwc |
= DNN S 8 ovec 1 E Sl V | | | S
u - 8 10 = CNN ° ’ ¢ E A ™
i 1 € = .]
S . " - | Al
1 | 8 -
S . O o s < B — S ; .
- . - oL + * Model optimization (pruning) not used
B - - @) -
_ [- - + - yet
. — — () []
10, + o+ T+ T : R i * Quantization: model parameters from
: . . - " .] float32 to int8
o —+ — . .
- - 1E | | E * Compiler transforms the model in a set
-2 L a I 1 oo vl 1 L | 1 1 R] - -
105 10 e 1 10 10 of instructions and a dataflow model
batch size batch size

- Overall CPU already meets the requirement imposed by the HLT latency
- Study on CPU load needs to be done, as well as the power dissipations

10

Conclusions

. Study of new possible algorithms to be implemented in the muon HLT algorithms
» Maintain good performance in high occupancy environment in terms of residuals (DNN) and efficiency-rejection (RNN)

e DNN and CNN successfully tested on FPGA

« O(few ms) achieved for inference time

« RNN has very good performances in terms of rejection and efficiency
. to be compared with offline Hough-transform in terms of timing
 No test on FPGA : LSTM layers currently not supported, only available in Demo Networks on specific FPGAs

 Implementation with hlsgml on going

Thank you for your attention!

11

Back-up slides

TensorRT

- Deep Learning Model Support: wide range of deep learning frameworks including TensorFlow, PyTorch, ONNX, and Caffe
- Plugin Architecture: TensorRT's functionality extendable by implementing custom layers and operations using its plugin
architecture. This enables support for specialized layers and custom network architectures

Layer & Tensor Fusion
FP32, FP16, INTS, and INT4 .
Precision Calibration . Kernel Auto-Tuning

‘ , .y., ® . L T RT Runti
e o o -
.)

o o o > o

® O o . g

¢ O
Trained Neural HH - Sadigd Optimized

Network & S\ Inference

Dynamic Tensor Multi-Stream Engine
Memory Execution

13

ONNX

- ONNX Runtime: high-performance execution engine specifically designed to efficiently run ONNX models
. Open-source project
- ONNX Runtime automatically performs optimizations such as weight quantization, layer fusion, and operation parallelization

Cross-Platform: compatible with a wide range of hardware
and software platforms, including edge devices, CPUs, GPUs,
and specialized accelerators

Deep Learning Model Support: wide range of deep learning
frameworks including TensorFlow, PyTorch, and Caffe

T . .
—Iraining mrameworkK — eployment targe
O Py h -~
OFCH) ~vsom--========mmmccccc e cccccmcccccce e e eeeeccccccccccccssccccccaaan CPU
B 00 "] - - - -
y e\‘*: “““““ -z -~ .
B Ly - ™ S R
- - - - - - /’
Sae S Smmao T wmmm- e =" » Ve Ss > %
____________ - \ -~ - ’

~~~~~~
________
__________
-------
____________
........
-------------
- B — — —
~~~~~~~~~~~~ // S—
- /
-

_____ /
-
- /
-
‘‘‘‘
- -
—————— /
————— ‘s\
-
- ./
=
e SO S s GPU
~ -~ -
523l 7
‘\ ‘‘‘‘‘ ‘4
Say, Srteeo -
-
—— /
- —
-
-
- . |/
- -
""""" \\
~~~~~ J
- -
-
-
--
e e
-
————— ’/‘
’a’ --- >
- ---
e - .~ \
- - >
- -
—' - - -~
- - ~
- - - -
PP w \\
- - =
K K e==="" -~
-
eras e L L L L T e T o L LT ST \
- -
- B -
- - - -
- - -
- - -
- - o’ "a \
~~~~~ - -
~~~~~ o P \
e T - [ ]
- /
"""""" \ untlme
~~~~~~~ \ /
""""" -~ /“
——————————— ~ - -
~~~~~~~~~~~~ — —
- - -
________
--------
————————
““““““““““
-------- R Y
,,,,,,,,,,,, P -’ A\
_______ N ’ - A
- - - S r) B
- - - - - - ’ - b
- - - \
B - 173 -~ N
- - - - -
AL . e
‘ E cikt B o e rrcr e e e - - - - - - - hll,l'




Recurrent neural network

Recurrent Neural Network
* Designed to deal with sequential data
* At each step, it takes as input the input

at time t and the output at time t-1

Unfold

&
=)
-©

> 0~ -~ D~ -

. e e

) DR O

LSTM

cell state

forget gate

Ct-1 ;
Old cell state

Ct

.
New cell state

Old cell output

ht1

New cell output

ht

input gate output gate

New cell input

* Recurrent Neural Network have problems with long term
memory

 The more time steps, the more the back-propagation
gradient vanishes -> NN does not learn long term
dependencies

LSTM networks can solve the long term memory problem

15




CNN structure

input_1 (InputLayer)
convl (Conv2D)
pooll (MaxPooling2D)
conv2 (Conv2D)
conv3 (Conv2D)
pool3 (MaxPooling2D)

conv4 (Conv2D)

poolsd (MaxPooling2D)

convs (Conv2D)

up_sampling2d (UpSampling2D
)

convé (Conv2D)

up_sampling2d_1 (UpSampling
2D)

conv7 (Conv2D)

up_sampling2d_2 (UpSampling
2D)

conv8 (Conv2D)
output (Conv2D)

Total params: 42,863
Trainable params: 42,863

[ (None, 3000, 16, 1)]

(None, 3000, 16, 2)

(None, 1500, 16, 2)

(None, 1500, 16, 4)

(None, 1500, 16, 8)

(None, 750,
(None, 7590,
(None, 750,

(None, 750,

16, 8)
16, 16)
8, 16)

SII6))

(None, 750, 16, 16)

(None, 750,

iy, )

(None, 1500, 16, 16)

(None, 1500, 16, 8)

(None, 3000, 16, 8)

(None, 3000, 16, 2)

(None, 3000, 16, 1)

16



RNN results

Entries

10!

1073

—
<
H

10°°

On IIIIIII| | Illlllll I TTTI]

1 Signal ATLAS Internal
1 Background 2 KHz/cm?

| | | | | | | | | | | | | | | | | | | I
0.2 0.4 0.6 0.8 1
RNNscore

ATLAS internal
5 KHz/cm?

1 Signal
1 Background

01 02 03 04 05 06 0.7 08 09 1
RNNscore

0

17

1073

10

ATLAS Internal
10 KHz/cm?

1 Signal
1 Background

IIIIIIII]IIII1IIII|IIII|IIIIrIIIIIIIIIIIIII|IIII

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RNNscore



