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Overview
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• Studying the performance of ML-based tracking algorithms on different architectures (CPU / 
GPU / FPGA ) 

• Discuss possibility to include ML algorithms for muon tracking at ATLAS muon High Level 
Trigger (HLT) 

• At the HL-LHC, an heterogeneous high-level triggering farm is considered, compromise 
between performance, costs, power-consumption 

• Performance studies on standalone G4 simulation of a generic setup similar to the 
spectrometer and the ATLAS New Small Wheels 

• Models tested are 
• Dense NN (DNN) for cluster reconstruction on strip detectors  
• Convolutional NN (CNN) and Recurrent NN (RNN)  for pattern recognition

1 MHz

10 kHz

How do commercial 
FPGA perform?

U50 VCK5000U250

HL-LHC ATLAS trigger system

https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://www.xilinx.com/products/boards-and-kits/vck5000.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html


ML algorithms for muon pattern recognition

• Algorithms for cluster reconstruction in MicroMegas (MM) and small Thin Gas Chambers 
(sTGC) like detectors and pattern finding  

• To speed up R&D part of the study, a toy model is simulated

• layers, b-field, background rate can be set 

• 4 samples produced with different noise rates:  

inspired by NSW HL-LHC rates 
• Effect from correlated background is also emulated 

2, 5, 10, 15 kHz /cm2
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Simulated NSW rates at HL-LHC 

Simple MC standalone for a generic strip detector, G4 fullsim 

(NSW TDR)

https://cds.cern.ch/record/1552862?ln=it


• Study of inference time and performance on different architectures: 
• CPU: using ONNX 

• Open Neural Network Exchange: open source framework that optimizes the 
usage of CPU resources 

• GPU: using tensor flow and tensorRT 
• Framework produced by NVIDIA to run optimized inference on GPU 

ML algorithms tested on CPU/GPU/FPGA
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• FPGA: using Vitis-AI workflow provided by Xilinx for inference acceleration

https://onnx.ai
https://developer.nvidia.com/tensorrt
https://www.amd.com/en.html
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Simple DNN for hit position reconstruction

• Tested using Vitis-AI workflow 

• Small resolution degradation after 
quantisation

Cluster reconstruction with DNN

Different tests performed: 
• Test on the trained model (floating-point 

model) with GPU 
• Test on a quantized model with GPU 
• Test of the quantized model on the FPGA

Current cluster position reconstruction in NSW with 
different algorithms: 

Challenges 
1. Resolution depends on incidence angle.   2.“Correlated” background

μTPC(NSW TDR)

A simple DNN O(50k parameters and 20 input) improves 
the resolution around up to 50% wrt centroid method

https://cds.cern.ch/record/1552862?ln=it


Pattern recognition with RNN
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• Not optimized for NSW reconstruction: 
• 2D histogram binning optimization 
• Choice of cut on number of hits in maxima 
• Large number of fakes with high occupancy 
• Time increase with occupancy 

Implementing new machine learning algorithm 
RNN

• Pattern recognition to discriminate muons hits from 
background hits exploiting info throughout layers 

• Standard current alg: Hough Transform 
• Each curve in the Hough space represents the family of 

lines passing through a reconstructed point 
• We define a 2D histogram in the Hough space 
• Segments are represented by maxima ( , )ρ0 θ0

https://doi.org/10.1088/1748-0221/19/06/P06029

https://doi.org/10.1016/S0734-189X(88)80033-1
https://doi.org/10.1088/1748-0221/19/06/P06029
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2Hough Transform, background rate = 2 KHz/cm
2Hough Transform, background rate = 5 KHz/cm

2Hough Transform, background rate = 10 KHz/cm
2Hough Transform, background rate = 15 KHz/cm

ROC: built from signal hit score

Comparison with HT alg

Pattern recognition with RNN
• RNN are optimized to identify sequences, and work with sparse data 
• Results on the standalone G4 sim for all the levels of bakcground 

• cluster position reconstructed with DNN
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Single hit score: output for each hit in the event

0 background hits

1 muon track hits

→
→

Input variables: 2D vector with hits position in a layer (using padding) for each layer 
Label: bool variable identifying layers with track hits + vector with info on hit association to a track
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Pattern recognition with RNN
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• Total Parameters: 1.3M 
• Also tested on different models with different #parameters 

(x1.6 and x2.5 parameters) 
• Inference time increases up to 25 %

• For small batch size CPUs with ONNX are preferable 
• TensorRT best at optimizing GPU usage at large batch sizes 

• Latency per event on GPU with TensorRT  for 
 

• CPUs and GPUs are already within HLT requirements

∼ 10μs
batch_size ∼ 4096

• Measurement of inference time VS batch_size on CPU and GPU 
• Using ONNX for CPU optimization 
• Using TensorRT for GPU optimization

• It was supposed to be possible to include it in the Vitis-AI workflow 
• Could work with the hls4ml workflow (studies ongoing)

(Batch size number of features set processed in parallel)→



CNN for pattern recognition
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• RNN models not supported for FPGA inference by Xilinx (for the moment) 
• To test ML algs for pattern recognition  development of convolutional 

neural networks 
• Using same dataset as for RNN without the clusterization step images 

built directly from firing strips

→

→

3000x16 pixels
3000x16 pixels

CNN  pre-processing step to built images (to be estimated) 
Not ideal for trigger  existing algs working directly on sparse data 
(RNN)

→
→
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Timing and performance on CPU/GPU/FPGA

DNN
CNN

• DNN and CNN models successfully tested on CPU, GPU and several FPGAs  
• Comparing CPU (ONNX) / GPU (TensorRT ) / FPGA (Vitis AI) for DNN and CNN inference 

• Batch size is ~ fixed in the case of the FPGA, free for CPU/GPU 
• VCK5000 can operate with batch sizes 4,6,8 

• FPGA times are not a simulation, are real processing times obtained on the U50, U250 and Versal VCK5000

• Model optimization (pruning) not used 
yet  

• Quantization: model parameters from 
float32 to int8 

• Compiler transforms the model in a set 
of instructions and a dataflow model
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• Overall CPU already meets the requirement imposed by the HLT latency 
• Study on CPU load needs to be done, as well as the power dissipations



Conclusions

• Study of new possible algorithms to be implemented in the muon HLT algorithms 

• Maintain good performance in high occupancy environment in terms of residuals (DNN) and efficiency-rejection (RNN) 

• DNN and CNN successfully tested on FPGA 

• O(few ms) achieved for inference time 

• RNN has very good performances in terms of rejection and efficiency 

•  to be compared with offline Hough-transform in terms of timing 

• No test on FPGA : LSTM layers currently not supported, only available in Demo Networks on specific FPGAs 

• Implementation with hls4ml on going 
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Thank you for your attention!



Back-up slides



TensorRT
• Deep Learning Model Support: wide range of deep learning frameworks including TensorFlow, PyTorch, ONNX, and Caffe 
• Plugin Architecture: TensorRT's functionality extendable by implementing custom layers and operations using its plugin 

architecture. This enables support for specialized layers and custom network architectures

FP32, FP16, INT8, and INT4

• Allocates memory to tensor only during usage 
• reducing memory footprints 
• avoiding allocation overhead
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ONNX
• ONNX Runtime: high-performance execution engine specifically designed to efficiently run ONNX models  

• open-source project 
• ONNX Runtime automatically performs optimizations such as weight quantization, layer fusion, and operation parallelization

Cross-Platform: compatible with a wide range of hardware 
and software platforms, including edge devices, CPUs, GPUs, 
and specialized accelerators

Deep Learning Model Support: wide range of deep learning 
frameworks including TensorFlow, PyTorch, and Caffe
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LSTM 


Recurrent neural network
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Recurrent Neural Network 
• Designed to deal with sequential data

• At each step, it takes as input the input 

at time t and the output at time t-1

•Recurrent Neural Network have problems with long term 
memory


• The more time steps, the more the back-propagation 
gradient vanishes -> NN does not learn long term 
dependencies


LSTM networks can solve the long term memory problem



CNN structure
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RNN results
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