
ICHEP 2024

Studies on track finding algorithms based on
machine learning with CPU, GPU and FPGA

Maria Carnesale on behalf of the ATLAS collaboration

Overview

2

• Studying the performance of ML-based tracking algorithms on different architectures (CPU /
GPU / FPGA)

• Discuss possibility to include ML algorithms for muon tracking at ATLAS muon High Level
Trigger (HLT)

• At the HL-LHC, an heterogeneous high-level triggering farm is considered, compromise
between performance, costs, power-consumption

• Performance studies on standalone G4 simulation of a generic setup similar to the
spectrometer and the ATLAS New Small Wheels

• Models tested are
• Dense NN (DNN) for cluster reconstruction on strip detectors
• Convolutional NN (CNN) and Recurrent NN (RNN) for pattern recognition

1 MHz

10 kHz

How do commercial
FPGA perform?

U50 VCK5000U250

HL-LHC ATLAS trigger system

https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://www.xilinx.com/products/boards-and-kits/vck5000.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

ML algorithms for muon pattern recognition

• Algorithms for cluster reconstruction in MicroMegas (MM) and small Thin Gas Chambers
(sTGC) like detectors and pattern finding

• To speed up R&D part of the study, a toy model is simulated

• layers, b-field, background rate can be set

• 4 samples produced with different noise rates:

inspired by NSW HL-LHC rates
• Effect from correlated background is also emulated

2, 5, 10, 15 kHz /cm2

3

Simulated NSW rates at HL-LHC

Simple MC standalone for a generic strip detector, G4 fullsim

(NSW TDR)

https://cds.cern.ch/record/1552862?ln=it

• Study of inference time and performance on different architectures:
• CPU: using ONNX

• Open Neural Network Exchange: open source framework that optimizes the
usage of CPU resources

• GPU: using tensor flow and tensorRT
• Framework produced by NVIDIA to run optimized inference on GPU

ML algorithms tested on CPU/GPU/FPGA

4

• FPGA: using Vitis-AI workflow provided by Xilinx for inference acceleration

https://onnx.ai
https://developer.nvidia.com/tensorrt
https://www.amd.com/en.html

5

Simple DNN for hit position reconstruction

• Tested using Vitis-AI workflow

• Small resolution degradation after
quantisation

Cluster reconstruction with DNN

Different tests performed:
• Test on the trained model (floating-point

model) with GPU
• Test on a quantized model with GPU
• Test of the quantized model on the FPGA

Current cluster position reconstruction in NSW with
different algorithms:

Challenges
1. Resolution depends on incidence angle. 2.“Correlated” background

μTPC(NSW TDR)

A simple DNN O(50k parameters and 20 input) improves
the resolution around up to 50% wrt centroid method

https://cds.cern.ch/record/1552862?ln=it

Pattern recognition with RNN

6

• Not optimized for NSW reconstruction:
• 2D histogram binning optimization
• Choice of cut on number of hits in maxima
• Large number of fakes with high occupancy
• Time increase with occupancy

Implementing new machine learning algorithm
RNN

• Pattern recognition to discriminate muons hits from
background hits exploiting info throughout layers

• Standard current alg: Hough Transform
• Each curve in the Hough space represents the family of

lines passing through a reconstructed point
• We define a 2D histogram in the Hough space
• Segments are represented by maxima (,)ρ0 θ0

https://doi.org/10.1088/1748-0221/19/06/P06029

https://doi.org/10.1016/S0734-189X(88)80033-1
https://doi.org/10.1088/1748-0221/19/06/P06029

0.8 0.85 0.9 0.95 1

rejection

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ef
fic
ie
nc
y

2RNN, background rate = 2 KHz/cm
2RNN, background rate = 5 KHz/cm

2RNN, background rate = 10 KHz/cm
2RNN, background rate = 15 KHz/cm

2Hough Transform, background rate = 2 KHz/cm
2Hough Transform, background rate = 5 KHz/cm

2Hough Transform, background rate = 10 KHz/cm
2Hough Transform, background rate = 15 KHz/cm

ROC: built from signal hit score

Comparison with HT alg

Pattern recognition with RNN
• RNN are optimized to identify sequences, and work with sparse data
• Results on the standalone G4 sim for all the levels of bakcground

• cluster position reconstructed with DNN

LSTM

H
its

 p
ro

ba
bi

lit
y

Unrolled LSTM

Time
distributed

Time
distributed

Time
distributed

Time
distributed

LSTM LSTM LSTM

La
ye

r

La
ye

r

La
ye

r

La
ye

r

H
its

 p
ro

ba
bi

lit
y

H
its

 p
ro

ba
bi

lit
y

H
its

 p
ro

ba
bi

lit
y

.

.

7

Single hit score: output for each hit in the event

0 background hits

1 muon track hits

→
→

Input variables: 2D vector with hits position in a layer (using padding) for each layer
Label: bool variable identifying layers with track hits + vector with info on hit association to a track

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RNNscore

4−10

3−10

2−10

1−10

1

bkg
Entries 227213

Mean 0.03289

Std Dev 0.09142

bkg

Signal
Background

15 kHz /cm2

En
tri
es

Signal

Background
Signal

Background

Pattern recognition with RNN

8

• Total Parameters: 1.3M
• Also tested on different models with different #parameters

(x1.6 and x2.5 parameters)
• Inference time increases up to 25 %

• For small batch size CPUs with ONNX are preferable
• TensorRT best at optimizing GPU usage at large batch sizes

• Latency per event on GPU with TensorRT for

• CPUs and GPUs are already within HLT requirements

∼ 10μs
batch_size ∼ 4096

• Measurement of inference time VS batch_size on CPU and GPU
• Using ONNX for CPU optimization
• Using TensorRT for GPU optimization

• It was supposed to be possible to include it in the Vitis-AI workflow
• Could work with the hls4ml workflow (studies ongoing)

(Batch size number of features set processed in parallel)→

CNN for pattern recognition

9

• RNN models not supported for FPGA inference by Xilinx (for the moment)
• To test ML algs for pattern recognition development of convolutional

neural networks
• Using same dataset as for RNN without the clusterization step images

built directly from firing strips

→

→

3000x16 pixels
3000x16 pixels

CNN pre-processing step to built images (to be estimated)
Not ideal for trigger existing algs working directly on sparse data
(RNN)

→
→

Signal
BackgroundEn

tri
es

CNN score

Signal
Background

Quantized model on u50
Quantized model on CPU
Floating-point model on CPU

Rejection

Ef
fic

ie
nc

y

Timing and performance on CPU/GPU/FPGA

DNN
CNN

• DNN and CNN models successfully tested on CPU, GPU and several FPGAs
• Comparing CPU (ONNX) / GPU (TensorRT) / FPGA (Vitis AI) for DNN and CNN inference

• Batch size is ~ fixed in the case of the FPGA, free for CPU/GPU
• VCK5000 can operate with batch sizes 4,6,8

• FPGA times are not a simulation, are real processing times obtained on the U50, U250 and Versal VCK5000

• Model optimization (pruning) not used
yet

• Quantization: model parameters from
float32 to int8

• Compiler transforms the model in a set
of instructions and a dataflow model

10

• Overall CPU already meets the requirement imposed by the HLT latency
• Study on CPU load needs to be done, as well as the power dissipations

Conclusions

• Study of new possible algorithms to be implemented in the muon HLT algorithms

• Maintain good performance in high occupancy environment in terms of residuals (DNN) and efficiency-rejection (RNN)

• DNN and CNN successfully tested on FPGA

• O(few ms) achieved for inference time

• RNN has very good performances in terms of rejection and efficiency

• to be compared with offline Hough-transform in terms of timing

• No test on FPGA : LSTM layers currently not supported, only available in Demo Networks on specific FPGAs

• Implementation with hls4ml on going

11

Thank you for your attention!

Back-up slides

TensorRT
• Deep Learning Model Support: wide range of deep learning frameworks including TensorFlow, PyTorch, ONNX, and Caffe
• Plugin Architecture: TensorRT's functionality extendable by implementing custom layers and operations using its plugin

architecture. This enables support for specialized layers and custom network architectures

FP32, FP16, INT8, and INT4

• Allocates memory to tensor only during usage
• reducing memory footprints
• avoiding allocation overhead

13

ONNX
• ONNX Runtime: high-performance execution engine specifically designed to efficiently run ONNX models

• open-source project
• ONNX Runtime automatically performs optimizations such as weight quantization, layer fusion, and operation parallelization

Cross-Platform: compatible with a wide range of hardware
and software platforms, including edge devices, CPUs, GPUs,
and specialized accelerators

Deep Learning Model Support: wide range of deep learning
frameworks including TensorFlow, PyTorch, and Caffe

14

LSTM

Recurrent neural network

15

Recurrent Neural Network
• Designed to deal with sequential data

• At each step, it takes as input the input

at time t and the output at time t-1

•Recurrent Neural Network have problems with long term
memory

• The more time steps, the more the back-propagation
gradient vanishes -> NN does not learn long term
dependencies

LSTM networks can solve the long term memory problem

CNN structure

16

RNN results

17

Signal

Background

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RNNscore

4−10

3−10

2−10

1−10

1

En
tri
es

Signal

Background
Signal

Background

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RNNscore

4−10

3−10

2−10

1−10

1

bkg
Entries 167782

Mean 0.03558

Std Dev 0.09874

bkg

Signal
Background

10 kHz /cm2En
tri
es

Signal

Background
Signal

Background

