OVERVIEW OF MACHINE LEARNING APPLICATIONS IN JUNO

WUMING LUO (IHEP) ON BEHALF OF JUNO ICHEP 2024@PRAGE

Introduction of JUNO *Applications of Deep Learning in MeV region PMT waveform reco for reactor anti-neutrinos Vertex/Energy reco for reactor anti-neutrinos *Applications of Deep Learning in GeV region Directionality for atmospheric neutrinos Particle Identification for atmospheric neutrinos *Summary

Wuming Luo

OUTLINE

Jiangmen Underground Neutrino Observatory(JUNO):

- Determine the neutrino mass ordering
- Measure neutrino oscillation parameters to sub-percent level SuperNova, Solar, Atm. Geo. etc

Wuming Luo

TA	Detector Arget Mass	ENERGY RESOLUTION	
KamLAND	1000 t	6%@1MeV	
D. Chooz	8+22 t		
RENO	16 t	8%@1MeV	
Daya Bay	20 t		
Borexino	300 t	5%@1MeV	
JUNO	20000 t	3%@1MeV	

JUNO

Top Tracker <

Water Pool <

Central Detector

~17,612 20" PMTs + ~25,600 3" PMTs + ~78% coverage

Liquid Scintillator 20kton

reactor $\bar{\nu}$ MeV

Neutrino Mass Ordering nan tred

non-uniformity

PMT dark noise

PMT charge smear

¹⁴C pileUp

vertex

IMPORTANCE AND PRINCIPLES

*Large number of PMTs O(104) installed on a sphere * each PMT as a pixel -> JUNO as a Camera ensemble of PMTs charge/time form an image Image is highly vertex and energy dependent Vertex/energy reconstruction <--> Image recognition

Wuming L

Large number of PMTs O(10⁴) installed on a sphere Method 1: projection to 2D plane —>Plane CNN Method 2: HEALPix —> plane/spherical CNN Method 3: 3D models such as pointNet++/Transformer

Wuming Luo Nucl.Sci.Tech. 33 (2022) 7, 93

INPUTS

(a) Map of PMTs. (b) Charge channel. (c) First hit time channel.

Wuming Luo

NIMA 1010 (2021) 165527

MODELS: RESNET-J

Wuming Luo

NIMA 1010 (2021) 165527

MODELS: GNN-J

Wuming Luo

NIMA 1010 (2021) 165527

Charge also helps constrain the Vertex, especially in the border region

VERTEX: MCP VS DYNODE

*Number: 12612 vs 5000; Time resolution(σ_{tts}): 12 ns vs 2.8 ns

Separating charge/time info by PMT type gives the best performance

Wuming Luo

Comparison between MCP PMTs and Dynode PMTs Nucl.Sci.Tech. 33 (2022) 7, 93

ENERGY: BDT/FCDNN

Inputs: feature engineering Models: BDT or FCDNN *Optimization: hyper-parameters *feature selection

 $ht_{n\%}$,

.25 3.75 1.24 3.25 1.23 MAPE, % 2.75 1.22 2.25-1.21 1.75-1.2 1.19 -1.25 1.18 ACCIIIII CHATSE ADATT'S Nr. solo AD husde 2de Denican LIK KUTLOSIS Sol ð Q 10 Added feature

on	Description
mCharge	Total accumulate
S	Number of fired
$c_{cc}, z_{cc}, R_{cc}, \theta_{cc}, \phi_{cc}, J_{cc}, \rho_{cc}, \gamma_z^{cc}, \gamma_y^{cc}, \gamma_x^{cc}$	Center of charge
pemean, pestd, peskew, pekurtosis	Charge distributi
$\gamma_{\rm cht}, z_{\rm cht}, R_{\rm cht}, \theta_{\rm cht}, \phi_{\rm cht}, J_{\rm cht}, \rho_{\rm cht}, \gamma_z^{\rm cht}, \gamma_y^{\rm cht}, \gamma_x^{\rm cht}$	Center of FHT
$ht_{n_{i+1}\%-n_i\%}$, ht_{mean} , ht_{std} , ht_{skew} , $ht_{kurtosis}$	FHT distribution

W. Luo@Neutrino2024

(k=0,1, ... ≥9) PEs

Wuming Luo

PMT WAVEFORM PHOTON COUNTING

Table 2: Modified RawNet architecture. For convolutional layers, numbers inside parentheses refer to filter length, stride size, and number of filters. For gated recurrent unit (GRU) and fully-connected layers, numbers inside the parentheses indicate the number of nodes.

Layer	Input	Output s	
Strided -conv	Conv(3,3,128) BN LeakyReLU	(128, 1	
Res block	$ \left\{\begin{array}{c} Conv(3,1,128)\\BN\\LeakyReLU\\Conv(3,1,128)\\BN\\-\overline{LeakyReLU}\\MaxPool(3)\end{array}\right\} \times 2 $	(128, 4	
Res block	$ \left\{\begin{array}{c} Conv(3,1,256)\\BN\\LeakyReLU\\Conv(3,1,256)\\BN\\-\overline{LeakyReLU}\\MaxPool(3)\end{array}\right\} \times 2 $	(256,	
GRU	GRU(1024)	(1024	
Speaker embedding	FC(128)	(128,	
Output	FC(10)	(10,)	

PHOTON COUNTING PERFORMANCE

0 -	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.	0.01	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1										
2 ·	0.00	0.03	0.95	0.02	0.00	0.00	0.00	0.00	0.00	0.00
3 -	0.00	0.00	0.07	0.87	0.06	0.00	0.00	0.00	0.00	0.00
ləd 4 -	0.00	0.00	0.00	0.13	0.77	0.09	0.01	0.00	0.00	0.00
True la	0.00	0.00	0.00	0.01	0.18	0.66	0.13	0.01	0.00	0.00
				0.00		0.00	0.57	0.10	0.00	
6 -	0.00	0.00	0.00	0.00	0.03	0.22	0.57	0.16	0.02	0.00
7 -	0.00	0.00	0.00	0.00	0.00	0.04	0.25	0.50	0.20	0.01
8 -	0.00	0.00	0.00	0.00	0.00	0.01	0.05	0.27	0.58	0.09
≥9 -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.21	0.76
	, ,	1	2		4	5	6	7	8	>9
Predicted label										

Left: Confusion matrix of RawNet W. Luo@Neutrino2024 *99% (95%, 87%) accuracy for 1PE (2PEs, 3PEs) *Accuracy decreases rapidly as nPEs increases Right: Confusion matrix based on charge classification *The accuracy is markedly inferior to that of RawNet

ENERGY RECONSTRUCTION

Note	Algo. Name	Observable	Likelihood: $\kappa \leq K_T$	Likelihood: κ >
Charge, Time, Maximum Likelihood Estimation	QTMLE (reference)	q (charge)	$\mathcal{L}(q_i \mu_i) = \sum_{k=1}^{+\infty} P$	$P_Q(q_i k)P(k,\mu_i)$
PE,Time, Maximum Likelihood Estimation	PETMLE (ideal)	k (true PEs)	$\mathcal{L}(k_i \mu_i) =$	$= P(k_i, \mu_i)$
Charge,Probability, Time, Maximum Likelihood Estimation	QPTMLE (realistic)	{p _k }, q	$\mathcal{L}(\{p_{k}^{i}\} \mu_{i}) = \sum_{k=0}^{9} R_{K_{T}k} p_{k}^{i} P(k,\mu_{i}),$	
Charge,PE, Time, Maximum Likelihood Estimation	QPETMLE (100% accuracy)	k(p _k =1), q	$\mathcal{L}(k_i \mu_i) = P(k_i,\mu_i)$	$\mathcal{L}(q_i \mu_i) = \sum_{k=1}^{+\infty} P_Q(q_i k)P$
Charge, Confusion Matrix, Time, Maximum Likelihood Estimation	QCTMLE	κ (p _κ :max), q	$P = \sum_{k=0}^{9} C_{k\kappa_i} \times P(k, \mu_i)$	

where μ_i is the expected nPEs for the i-th PMT, $P(k, \mu_i)$ is just₄ the Poission probability of observing k p.e. given μ_i and $P_Q(q_i|k)$ Wun is the charge pdf for k p.e.

$$R_{K_Tk} = \sum_{\kappa=0}^{K_T} C_{k\kappa},$$

confusion matrix $C_{kk'}$

RELATIVE IMPROVEMENT

*Using the photon counting information for PMTs with ($\kappa \leq K_T$) PEs can improve the energy resolution *The improvement becomes smaller as K_T increases due to the dropping accuracy for high PEs *Additional checks were done to validate the results Wuming Luo

$\nu_{\mu} vs \nu_{e} vs NC$

Direction

Neutrino Mass Ordering

atm.ν GeV

JUNO NMO SYNERGY

- * NMO @ 6years $\Delta \chi^2$: Reactor (~9), atm. (~1.96), $|\Delta m^2_{ee}|(4|1.5\% \text{ or } 9|1\%)$
- 1.96 of atm. was estimated with assumptions
- Can we do better than Yellow Book?

reactor ν MeV

Neutrino Mass Ordering

 $|\Delta m^2_{\alpha\alpha}|$

CHALLENGES AND OPPORTUNITIES

Neither track information, nor Cherenkov rings for JUNO excellent neutron tagging; 3. hadronic component visible in LS; 4. can measure distinctive isotopes

Wuming Luo

Advantages of JUNO: 1. large PMT coverage(78%), large volume; 2.

PARTICLE TOPOLOGY

Energy deposition topology in LS for different type of particles

e

PLANE MODEL: EFFICIENTNETV2-S

SPHERICAL MODEL: DEEPSPHERE

Wuming Luo

X4

Wuming Luo

3D MODEL: POINTNET++

* Directly reconstruct the direction of ν instead of the charged lepton Initigate the intrinsic large uncertainty between the two *hadronic component in LS also helps, advantageous w.r.t. Water Cerenkov Energy dependent Zenith Angle resolution, less than 10° for E>3GeV

Wuming Luo

J. Phys. G: 43 (2016) 030401 **Yellow Book** $\sigma_{\theta\mu} = 1^{\circ}$ $\sigma_{\theta\nu} = 10^{\circ}$

* step2: $\bar{\nu}$ vs ν Wuming Luo

2.5

 E_{v} [GeV]

(b) Neutron multiplicity

0.0

PID ML INPUT & MODEL

*PMT features --> PointNet++ (x, y, z, feature_i...) Neutron candidates —> DGCNN (x, y, z)

PID PRELIMINARY PERFORMANCE

Fig. 8: Illustration of the AUC score using $\nu_e / \overline{\nu}_e$ classification as an example. The AUC score can be viewed as an optimisation of $\nu_e / \overline{\nu}_e$ efficiencies.

Wuming Luo

<u>Wing Yin Ma@Neutrino2024</u>

PID PRELIMINARY PERFORMANCE

Fig. 8: Illustration of the AUC score using $\nu_e / \overline{\nu}_e$ classification as an example. The AUC score can be viewed as an optimisation of $\nu_e / \overline{\nu}_e$ efficiencies.

Wuming Luo

<u>Wing Yin Ma@Neutrino2024</u>

MORE INTERESTING TOPICS

PMT de-noising, waveform reco
¹⁴C pileUp identification
Muon classification/combined reco
Seperation of Scintillation and Cherenkov photons?
Multi-target reco?
And more...

SUMMARY

*With O(104) PMTs and 20kton LS, JUNO provides a perfect scenario for Machine Learning applications A few examples were presented * MeV reactor ν: PMT waveform/vertex/energy reco * GeV atm. ν: directionality reco and PID *More interesting and challenging problems... *ML can further enhance the capability of the detector, yielding faster, better results

Wuming Luo

THANK YOU!

Several postDoc openings at JUNO Commissioning, Reconstruction, Physics Analysis and more... Competitive salary! Email: <u>luowm@ihep.ac.cn</u>

INPUTS: PMT FEATURES

Feature variables extracted from PMT waveforms

Wuming Luo

ATM. NEUTRINOS: DIRECTIONALITY

Wuming Luo

