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Tree Tensor Networks: machine learning

Tensor network methods were born to represent wavefunctions |ψ⟩ and hamiltonians H of many-body quantum
systems on classical computers. They consist of the factorization of very high-order tensors into networks of smaller
tensors, specifically built to avoid the curse of dimensionality [1].

They are typically exploited in energy minimization al-
gorithms or for time evolution simulations, but they can
also be exploited in several Machine Learning contexts.

For example Tree Tensor Networks (TTNs), originally
devised to represent quantum entangled states, can be
trained as ML classifiers.

By mapping the features of a classic dataset into a higher
dimensional space, we can represent each sample as a
separable quantum state Φ(x).

With a supervised learning approach, we can teach the
TTN how to properly classify each sample Φ(x) follow-
ing the decision function f (x) = W · Φ(x).
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Why quantum objects for ML?

•Bond dimension

Tensor networks can be optimized during
training to reduce the number of param-
eters. The size of the inner links of the
network can be reduced with SVD.

→ Less parameters!

•Quantum correlation

These measurements allow to remove re-
dundancies: if two features are strongly
(anti-)correlated they convey the same
type of information and one of them can
be discarded.

→ Less features!

•Von Neumann Entropy

TTN bipartitions enable Schmidt decom-
position: entropy measurements repre-
sent the relevance of the information en-
coded in each bipartition with respect to
the classification task.

→ Less branches!

Singular Value Decomposition in TN notation.
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Quantum ML for HEP

• TTNs are good candidates to be deployed in frameworks where resource
saving is a crucial prerequisite.

• Only linear operations are involved when dealing with TTNs, without
losing representation capacity.

• FPGAs are naturally good at performing fast parallel computations like
matrix multiplication and tensor contraction.

The combination of quantum-inspired networks and programmable logic allows to produce a system able to make
classification predictions in a ultra-low latency environment, which can be deployed in the Trigger pipeline of several
HEP experiments.

Project outline:

• Task: binary classification. The scalar output is
the probability of belonging to a specific class.

Pi =
| ⟨Φ(x)|ψi ⟩ |2∑

i
| ⟨Φ(x)|ψi ⟩ |2

• Dataset: different data with increasing task com-
plexity. Classic ML datasets Iris[2] and Titanic[3]
for benchmarking and LHCb OpenData for b/anti-
b flavor tagging [4].

• Architectures: three TTNs with 4, 8, 16 input
features, different sets of hyperparameters, and in-
creasing sizes.

• Training: performed in software with local tensor
update algorithms to avoid barren plateau[5].

• Inference: hardware implementation of full TTN
contraction with different degrees of paralleliza-
tion.
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Inference and tensor contraction

Inference: Full TTN contraction with data sample.

Tensor contraction is the basic operation that needs to be imple-
mented.

zi =

D∑
j=1

D∑
k=1

Vijk xj yk

We construct it by directly instantiating DSPs, splitting the three
factors multiplication into different stages:

1: cartesian product between x and y .
2: multiply results of 1 by the corresponding weights V
3: parallel sums to compute final vector components.

Inference in hardware
• FPGA programmed with architecture-

specific firmware. Hyperparameters
are fixed after implementation.

• Software-trained weights are written
on static blocks of RAM.

• The feature map is implemented
in hardware with Look Up Tables
(LUTs).

• Raw data are streamed in input and
corresponding the output is returned
to host PC.

To explore several combinations of resource usage and latency, we implemented the operation with two different
degrees of parallelization. The Full Parallel approach maximize the resources and minimize latency, while the Partial
Parallel approach reduces the number of DSPs, resulting in an increase in latency.
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Tensor contraction: full parallel

Block diagram example for D=2, X=2.

Resources: O(X3)
D2 at multiplication 1 to compute xy cartesian product.
XD2 at multiplication 2 to multiply each D2 result of 1 by
the X weights factors.
Parallel sums at 3 obtained with adder trees.

DSP =

L∑
i=1

N
2i X2

i−1(Xi + 1)

Latency: O(log2 X2)
Parallel computation, fully pipelined.
Variable DSP latency, tunable with number of internal
register ∆tDSP .
Adder tree latency scaling as log2 D2.

∆T = ∆tDSP

L∑
i=1

2 + log2(X2
i−1)

Wave diagram example for D=2, X=2.
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Tensor contraction: partial parallel

Contraction block diagram for D=2 and X=2.

Resources: O(X2)
1 DSP at multiplication 1 to compute x and y cartesian
product.
D2 at multiplication 2, where each result of 1 if multiplied
by the X weights factors.
X serial sums at 3.

DSP =

L∑
i=1

N
2i (X2

i−1 + 1)

Latency: O(X2)
Serial computation, fully pipelined.
Variable DSP latency, tunable with number of internal
register ∆tDSP .
Latency becomes polynomial in X.

∆T = ∆tDSP

L∑
i=1

X2
i−1 + Xi + 1

Wave diagram for D=2, X=2.
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Resources

∗ lorenzo.borella.1@phd.unipd.it ICHEP2024, Prague
Quantum machine learning classifiers on FPGA for ultra-low latency applications 11 / 21



Introduction Methods Analysis Conclusion Backup

Latency
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Quantization

Accuracy vs quantization for TTN with N=8. Resources inferred for single multiplication on KCU1500.

• The numeric accuracy is architecture-specific; we might not need 16 bits fixed-point numbers.
• For some architectures, we can devote fewer bits for the fractional part without losing classification accuracy.
• DSP usage for multiplication is hardware-specific: multiplications between fewer bits can be done with

LUTs.
• Different resources and latency optimizations are possible if high numeric precision is not required.
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Validation

TTN with N=16 features, validated on 500 samples.

Max quantization precision: 14 bits for the fractional part,
LSB corresponding to 3.1x10−5.

Outputs in range [0,0.05]: distribution of HW-SW values
with σ = 6.71x10−4 corresponding to 4 LSBs.

SW accuracy: 63%. HW accuracy drops with less than
10 bits for the fractional part.

TTN with N=8 features, validated on 100 samples.

Max quantization precision: 14 bits for the fractional part,
LSB corresponding to 3.1x10−5.

Outputs in range [-1,1.5]: distribution of HW-SW values
with σ = 5.792x10−3 corresponding to 7 LSBs.

SW accuracy: 75%. HW accuracy drops with less than 4
bits for the fractional part.
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Conclusions

• Firmware for hardware inference with
different degrees of parallelization.

• Validated ultra-low latency classifier.

• Tree Tensor Networks as quan-
tum machine learning classifiers for
physics.

• Projection of resources and latency
for different architectures.
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Thank you for your attention!
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TTN architectures

Generic TTN architecture with N = 16 features.

Hyperparameters
N input features as D-dim vectors
according to local feature map:

Φ(xi ) =

[
sin

(
πxi

2

)
cos

(
πxi

2

)]
Binary trees: L = log2 N lay-
ers, with bond dimension scaling as
Xi = min(X0,D2i

).

Output dimension O = 1 for bi-
nary classification, contraction re-
sult is a scalar.

Limitations
• Restricted amount of resources on FPGA (DSP, LUT, FF, BRAM, I/O) and tight physical constraints. The

number of architectures that can be implemented is limited.

• Latency constraints must be respected for systems deployed in the Trigger pipeline of HEP experiments.
High rate of input data.

• Real numbers in hardware: fixed-point precision with 16b, limited representation range.
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Firmware

Full firmware block diagram.

The FPGA is programmed with architecture-
specific firmware. The TTN hyperparameters
are fixed after implementation.

The values of the weights are written on con-
figurable register blocks via AXI Lite inter-
face. Possibility of testing different networks
and quantizations.

Input data are sent to the FPGA with AXI
Stream protocol; different timings needed for
FP and PP implementations.

Project developed on KCU 1500 Kintex Ultra-
scale board, plugged in a Host PC with PCIe
communication.

The firmware runs with the AXI Stream clock
fixed at 250 MHz, but the Out Of Context
(OOC) implementation of the TTN can reach
up to 500 MHz.
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