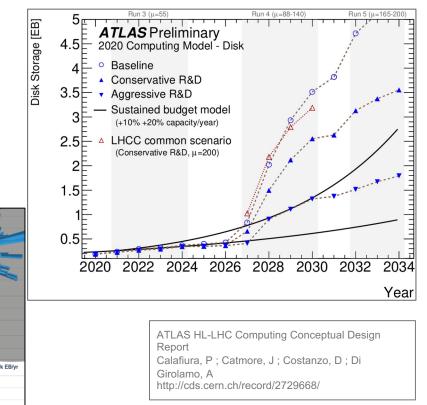
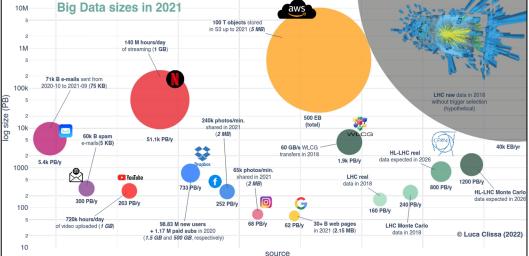
Baler: Machine Learning-Based Data Compression

The University of Manchester

Axel Gallén Uppsala University ICHEP 2024

Bala

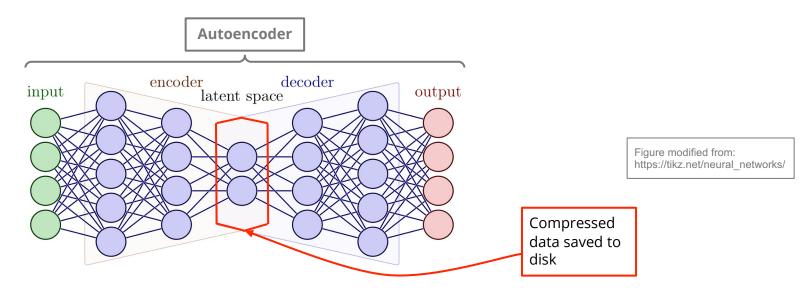

UPPSALA UNIVERSITET



The Problem

- Too much data, too little storage
- Not unique to LHC Experiments
- High demand for compression

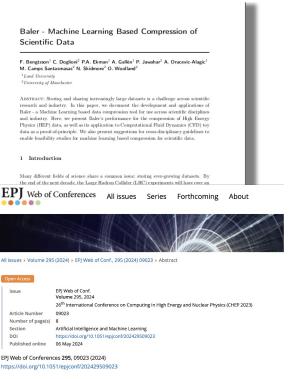
https://cloud.datapane.com/reports/dkjK28A/big-data-2021/ - Image by Luca Clissa



20/7/2024

A Solution

- One approach: Lossy compression
- One problem: Lossy compression needs to be tailored
- Solution: Lossy Machine Learning based compression



https://arxiv.org/abs/2305.02283

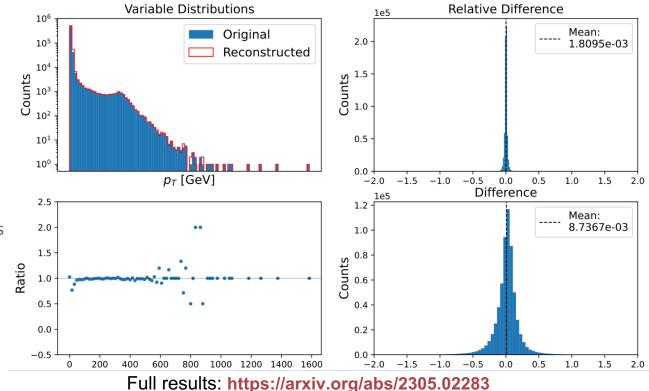
May

Our Tool: Baler

- We have created a tool called **Baler** to help investigate the viability of this compression method
- Multidisciplinary tool
- Distributed and developed as an **open source** project [GitHub: baler-collaboration/baler]
- Simple to install as a **pip** package or as command line tool
 - o pip install baler-compressor
 - Poetry run python baler --project=CMS--mode=train
 - Docker version also available

Baler - Machine Learning Based Compression of Scientific Data

Fritjof Bengtsson Folkesson^{1*}, Caterina Doglioni^{2**}, Per Alexander Ekman^{1***}, Axel Gallén^{1****}, Pratik Jawahar^{2†}, Marta Camps Santasmasas^{2*} and Nicola Skidmore^{2§}

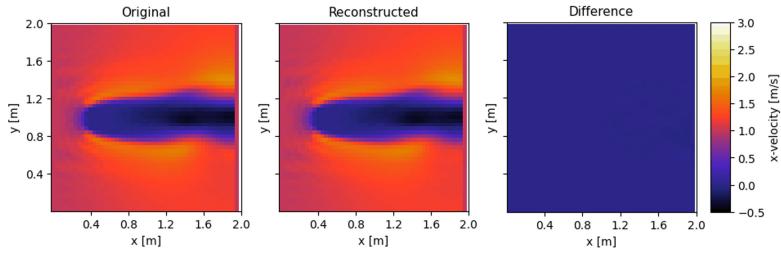

Results: Jet Transverse Momentum

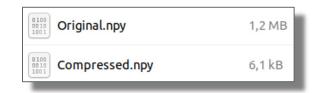
- Open CMS Data

 ~ 600 000 jets

 24 variables per
 - jet compressed to 14 variables
 - Transverse momentum one of these variables
- 58% original size

DOI:10.7483/OPENDATA.CMS.KL8H.HFVH

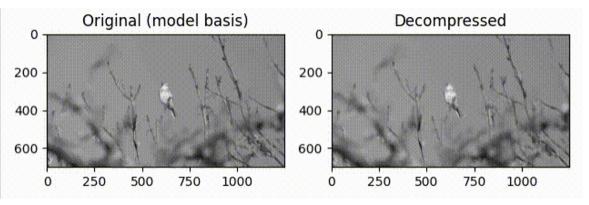



Baler: Machine Learning-Based Data Compression - Axel Gallén - UU - ICHEP 2024

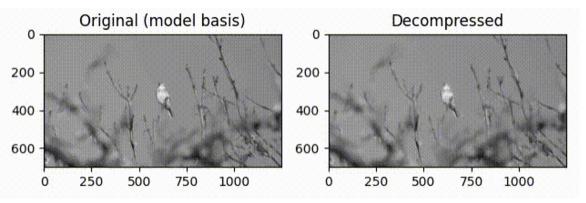
Results: CFD

20/7/2024

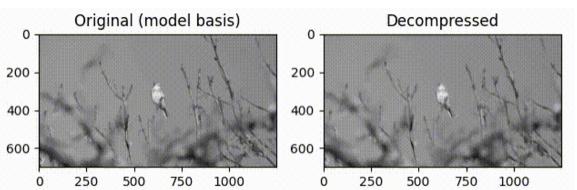
- Data consists of 2D slice of a liquid flowing over a cube
- The compressed file is **0.5%** the size of the input
- Issue: Model larger than input (4.2 MB vs 1.2 MB)

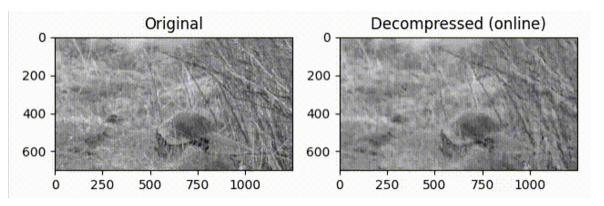


Online vs offline


 Previously applied model trained on one dataset to the same dataset (offline)

Online vs offline

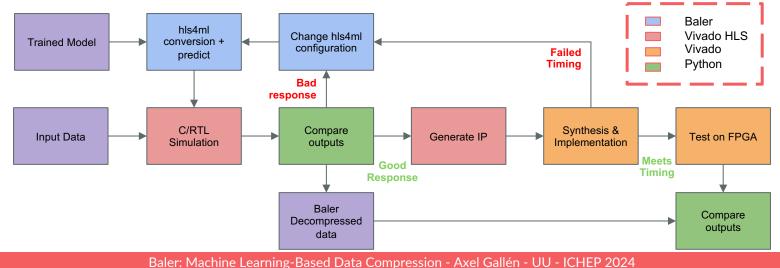

- Previously applied model trained on one dataset to the same dataset (offline)
- Can also apply to similar but unseen datasets (online)
 - Eliminate the cost of the model size!
- Useful for compressing live data (triggers, networks, etc)



Online vs offline

- Previously applied model trained on one dataset to the same dataset (*offline*)
- Can also apply to similar but unseen datasets (online)
 - Eliminate the cost of the model size!
- Useful for compressing live data (triggers, networks, etc)

20/7/2024


Baler on FPGA: Workflow

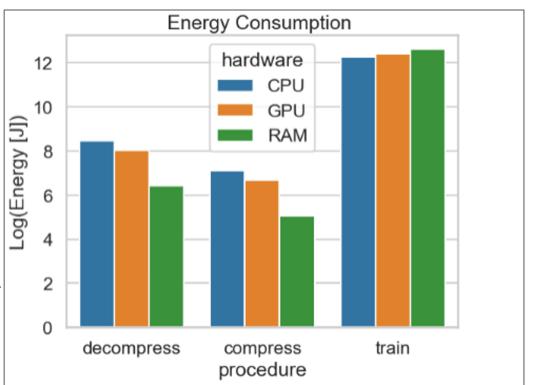
- Prototype version for developing and running Baler on an FPGA
 O Using vivado HLS code
- Useful in **bandwidth-restricted cases**

20/7/2024

• Network cards, detector readout, triggers, transmitters

• Assessing performance, latency and power efficiency

Recent Results


20/7/2024

Environmental impact of Baler

- Study by Leonid Didukh
- Need to compare energy consumption of CPU vs GPU
 - Faster not always better!
 - Energy is a main cost of big data
 - Substantial carbon footprint

• In future plan to compare FPGA power consumption as well

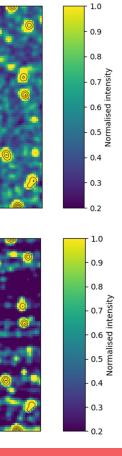
Mössbauer imaging – potential solution to storage issues

• Khwaish Anjum, DESY

20/7/2024

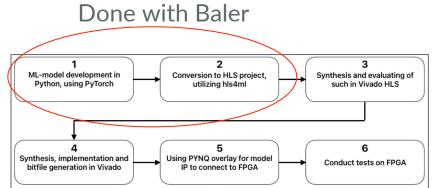
- Taking ~ 2 TB of images every ~ 5 days
 - Data acquisition uptime: > 75%
- Currently data is discarded when storage limit is reached
 - Saving compressed with some loss in quality is ok!

Reconstructed


Original

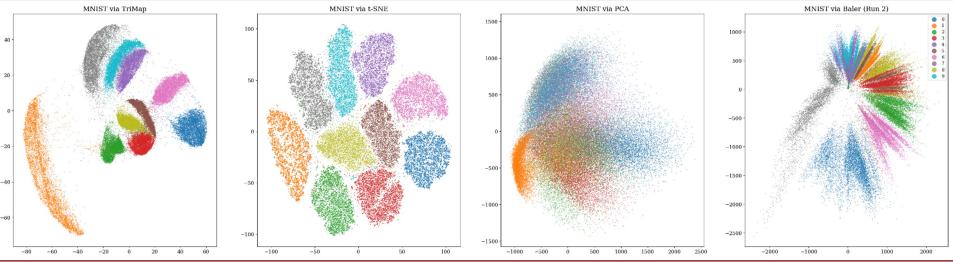
750

750


840

Zoomed Plot

Performance of ML-Based Bandwidth Compression on FPGAs


- Aleko Lilius, Lund University
 - Collaboration with the MAX IV laboratory
- Real-time compression of images on FPGAs
- Throughput increase of ~16x was achieved (compared to desktop CPUs)
 - Depending on model size
- Several key factors regarding ML performance on FPGAs was found

Model (Encoder)	Processing Unit	Time (s)	Throughput (inferences/s)
DNN Large	CPU	0.95	189473
DNN Large	FPGA	1.26	142377
DNN Reduced	CPU	0.94	191489
DNN Reduced	FPGA	0.23	768481
DNN Tiny	CPU	0.86	209302
DNN Tiny	FPGA	0.05	3472422

Exploring Baler's Dimensionality Reduction Capacities via Latent Space Visualisation

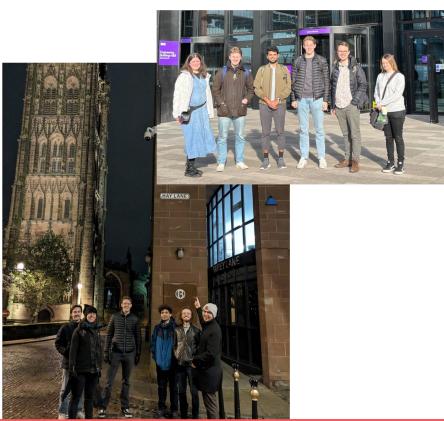
- Malena Duroux, Manchester
- Visualization and comparison of latent space representations across Autoencoders on the MNIST dataset
- Interesting adjacent study on the Autoencoder subject

20/7/2024

Summary

- Baler is a new toolkit for compressing data using autoencoders
- Capable of **impressive** compression results, but requires saving a **large model**

• Next steps: **FPGAs** for network or trigger applications & **online lossy compression**


• Careful management of a project can provide short tasks suitable both for junior members and academics with limited time

Interested? Feedback? Contact us!

- We are a friendly, cross-discipline team with significant involvement from **ECRs** and **industry**
- Bachelor's/Master's and PhD projects very welcome and **can be supported**

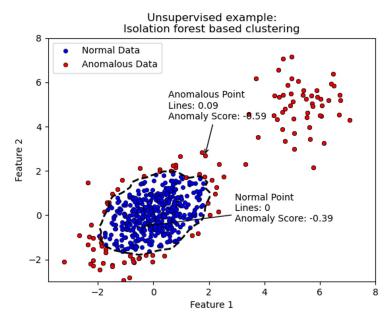
- <u>https://github.com/baler-collaboration/baler</u>
- baler-compression-members@cern.ch
- <u>axel.lars.gallen@cern.ch</u>
- james.smith-7@manchester.ac.uk
- <u>caterina.doglioni@manchester.ac.uk</u>

Backup

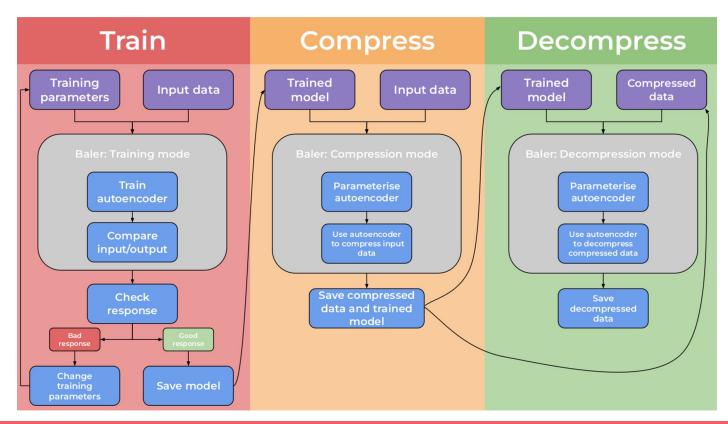
20/7/2024

Software Sustainability (energy & more)

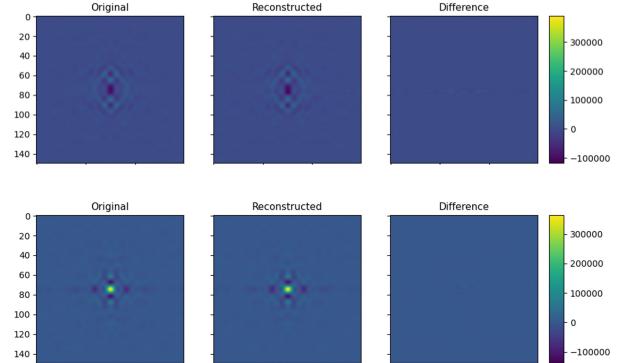
- Funded by local **software sustainability** grants
- How can we improve climate impact?
 - Reduce software resource usage
 - Efficient software
 - Trade-off between performance and consumption
 - Share cross-discipline expertise
 - Reuse software
 - Open-source
 - Well-written so it can be extended
 - Generic as possible
 - Recycle old software
 - Good documentation!
 - Good publicity
 - Preserve code and datasets (github, zenodo)

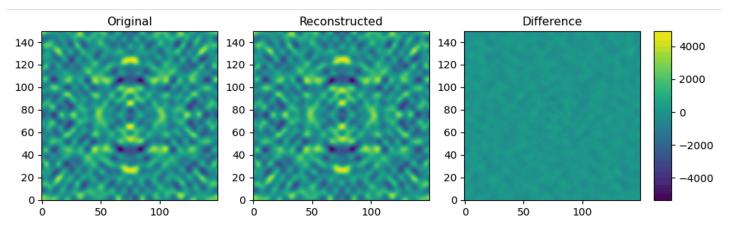

Community Development

- Project driven by Early-Career Researchers
 - Main contributors for this project: undergraduate/Master's students and summer students/interns
 - Huge amount of high-quality work, but seasonal and limited prior experience
 - Strong tutorials and documentation essential for rapid onboarding
 - Managed by PhDs/Post-Docs, limited academic involvement
 - Well defined, well planned short projects useful for students and academics alike
 - Important to reward junior members and share knowledge across academia (ESCAPE, EVERSE)
- Range of funding sources are important, large and small
 - Small 'pump-priming' grants useful for buying prototype equipment, hiring RSEs
 - Large national and international grants important for academic stability (Horizon, ESCAPE)
- Industry connections fruitful for datasets and best practices, but difficult to find
 - Difficult to convince we don't want money or a job!


Anomaly Detection for Outlier Removal

- Online performance degraded by **outliers**
- Exploring use of **anomaly detection** to separate outliers
 - Outliers could be stored in full for further analysis
- Use a simplified version of Baler to build a **probability distribution** of points in latent space
- Remove points that significantly disagree, iterate recursively
- Performance evaluation ongoing
- Also exploring clustering and categorisation

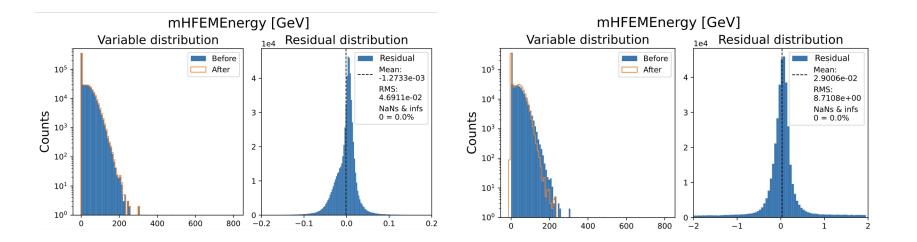

Workflow


Online vs offline (X-Ray Diffraction)

- Previously applied model trained on one dataset to the same dataset (*offline*)
- Can also apply to similar but unseen datasets (*online*)
 - Eliminate the cost of the model size!
- Useful for compressing live data (triggers, networks, etc)

X-Ray Diffraction

- "4M simulated diffraction images of chaperone 3iyf"
 In actuality 151x151x151 array, which I split into two 75x150x15 arrays
- Train on one half to compress down to 0.001% the original size
- Used for compression of the other half
 - Actually great performance

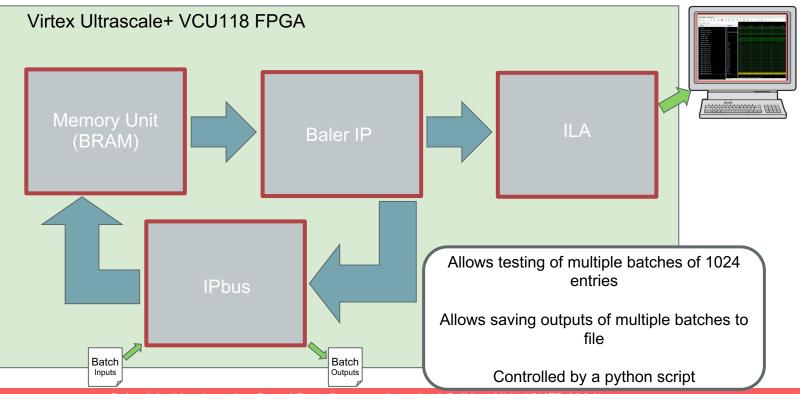


20/7/2024

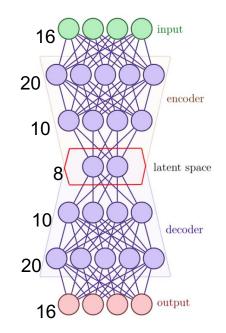
1.7x vs 6x compression

1.7x compression

6x compression


Full variable list (see

https://arxiv.org/abs/2305.02283)


Table 2: Residual and Response distribution means and RMS values for all variables in the dataset. These values are presented at R = 1.7, and all values have been averaged over 5 runs, with an added statistical error of two standard deviations.

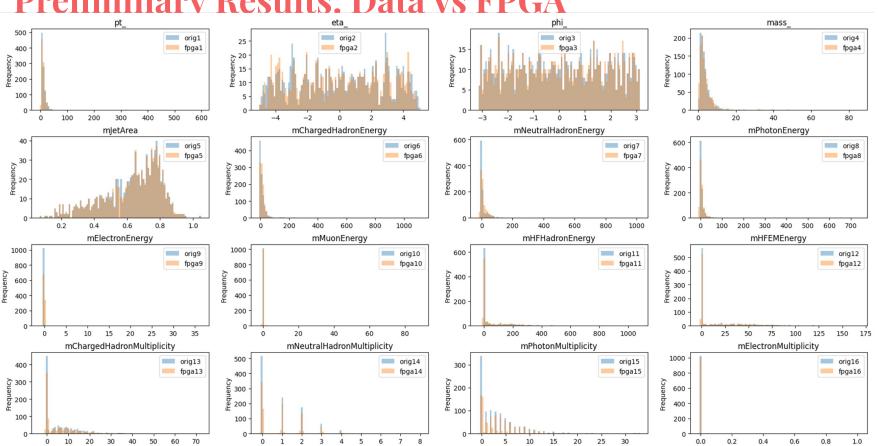
Variable $(R = 1.7)$	Respo	onse	Resid	lual
variable $(R = 1.7)$	Mean	RMS	Mean	RMS
p _T	$-1.07 \times 10^{-3} \pm 1.34 \times 10^{-2}$	$2.09\times 10^{-2}\pm 3.56\times 10^{-3}$	$-1.44 \times 10^{-2} \pm 1.04 \times 10^{-1}$	$2.12\times 10^{-1}\pm 5.29\times 10^{-2}$
η	$3.75\times 10^{-4}\ \pm 6.11\times 10^{-4}$	$8.12 \times 10^{-1} \pm 1.17$	$-1.12\times10^{-3}\pm2.67\times10^{-3}$	$2.09\times 10^{-3}\pm 1.45\times 10^{-3}$
φ	$3.44 \times 10^{-4} \ \pm 8.64 \times 10^{-4}$	$1.93\times 10^{-1}\pm 4.32\times 10^{-1}$	$2.45\times 10^{-4}\pm 1.80\times 10^{-3}$	$9.91 \times 10^{-4} \pm 1.12 \times 10^{-3}$
mass	$2.39 \times 10^{-1} \pm 7.87$	${4.38\times10^{3}\pm4.47\times10^{3}}$	$-8.05\times10^{-3}\pm2.51\times10^{-2}$	$3.98\times 10^{-2}\pm 1.42\times 10^{-2}$
mJetArea	$6.12 \times 10^{-5} \pm 1.81 \times 10^{-4}$	$3.13\times 10^{-4}\pm 1.48\times 10^{-4}$	$3.21\times 10^{-5}\pm 8.90\times 10^{-5}$	$1.10\times 10^{-4}\pm 5.77\times 10^{-5}$
mChargedHadronEnergy	$1.58 \times 10^{-3} \pm 1.70 \times 10^{-2}$	$2.85\times 10^{-2}\pm 1.30\times 10^{-2}$	$1.68 \times 10^{-2} \pm 1.43 \times 10^{-1}$	$1.71 \times 10^{-1} \pm 7.33 \times 10^{-2}$
mNeutralHadronEnergy	$7.05\times 10^{-2}\ \pm 9.88\times 10^{-2}$	$2.22\times 10^{-1}\pm 6.59\times 10^{-2}$	$2.77 \times 10^{-1} \pm 5.23 \times 10^{-1}$	$6.94 \times 10^{-1} \pm 2.26 \times 10^{-1}$
mPhotonEnergy	$-2.75 \times 10^{-2} \pm 7.48 \times 10^{-2}$	$6.84 \times 10^{-2} \pm 1.09 \times 10^{-1}$	$-8.00 \times 10^{-2} \pm 1.87 \times 10^{-1}$	$1.52 \times 10^{-1} \pm 1.77 \times 10^{-1}$
mElectronEnergy	$-7.71 \times 10^{-2} \pm 1.05 \times 10^{-1}$	$1.44 \times 10^{-1} \pm 7.47 \times 10^{-2}$	$1.71\times 10^{-2}\pm 5.32\times 10^{-2}$	$8.40\times 10^{-2}\pm 4.15\times 10^{-2}$
mMuonEnergy	$1.29\times 10^{-2}\ \pm 1.97\times 10^{-2}$	$8.04\times 10^{-2}\pm 9.77\times 10^{-2}$	$1.18\times 10^{-2}\pm 1.46\times 10^{-2}$	$3.15\times 10^{-2}\pm 7.05\times 10^{-3}$
mHFHadronEnergy	$-1.10\times 10^{-2}\ \pm 4.66\times 10^{-2}$	$1.77\times 10^{-1}\pm 2.48\times 10^{-2}$	$-3.15 \times 10^{-1} \pm 1.07$	$1.85 \pm 7.31 \times 10^{-1}$
mHFEMEnergy	$1.78 \times 10^{-3} \pm 7.40 \times 10^{-3}$	$1.41\times 10^{-2}\pm 3.63\times 10^{-3}$	$1.22\times 10^{-2}\pm 8.26\times 10^{-2}$	$6.93\times 10^{-2}\pm 5.54\times 10^{-2}$
mChargedHadronMultiplicity	$-1.00 \times 10^{-3} \pm 5.04 \times 10^{-3}$	$4.48\times 10^{-3}\pm 4.90\times 10^{-3}$	$-3.13\times10^{-3}\pm1.82\times10^{-2}$	$9.68\times 10^{-3}\pm 1.50\times 10^{-2}$
mNeutralHadronMultiplicity	$-1.22 \times 10^{-4} \pm 1.29 \times 10^{-3}$	$8.76\times 10^{-4}\pm 9.42\times 10^{-4}$	$-1.19\times10^{-4}\pm1.51\times10^{-3}$	$9.89\times 10^{-4}\pm 1.20\times 10^{-3}$
mPhotonMultiplicity	$-1.14 \times 10^{-3} \pm 3.62 \times 10^{-3}$	$2.72 \times 10^{-3} \pm 4.14 \times 10^{-3}$	$-2.69 \times 10^{-3} \pm 7.44 \times 10^{-3}$	$4.92\times 10^{-3}\pm 7.12\times 10^{-3}$
mElectronMultiplicity	$1.07 \times 10^{-3} \pm 3.87 \times 10^{-3}$	$2.37 \times 10^{-3} \pm 2.37 \times 10^{-3}$	$-1.54 \times 10^{-5} \pm 9.96 \times 10^{-5}$	$2.11\times 10^{-4}\pm 1.75\times 10^{-4}$
mMuonMultiplicity	$1.12 \times 10^{-3} \pm 1.22 \times 10^{-3}$	$2.51\times 10^{-3}\pm 6.69\times 10^{-4}$	$5.67 \times 10^{-5} \pm 1.16 \times 10^{-4}$	$2.41\times 10^{-4}\pm 6.35\times 10^{-5}$
mHFHadronMultiplicity	$-1.34 \times 10^{-3} \pm 1.84 \times 10^{-3}$	$2.53 \times 10^{-3} \pm 1.94 \times 10^{-3}$	$-2.67 \times 10^{-3} \pm 3.33 \times 10^{-3}$	$4.44 \times 10^{-3} \pm 4.05 \times 10^{-3}$
mHFEMMultiplicity	$2.41\times 10^{-4}\ \pm 2.51\times 10^{-3}$	$1.98\times 10^{-3}\pm 1.33\times 10^{-3}$	$5.98 \times 10^{-4} \pm 4.16 \times 10^{-3}$	$3.08\times 10^{-3}\pm 2.95\times 10^{-3}$
mChargedEmEnergy	$-7.72 \times 10^{-2} \pm 1.05 \times 10^{-1}$	$1.44\times 10^{-1}\pm 7.48\times 10^{-2}$	$1.72\times 10^{-2}\pm 5.30\times 10^{-2}$	$8.40\times 10^{-2}\pm 4.15\times 10^{-2}$
mChargedMuEnergy	$1.29\times 10^{-2}\ \pm 1.97\times 10^{-2}$	$8.05\times 10^{-2}\pm 9.78\times 10^{-2}$	$1.18\times 10^{-2}\pm 1.46\times 10^{-2}$	$3.15\times 10^{-2}\pm 7.07\times 10^{-3}$
mNeutralEmEnergy	$-1.73\times 10^{-2}\ \pm 5.42\times 10^{-2}$	$5.89\times 10^{-2}\pm 8.87\times 10^{-2}$	$-6.70\times10^{-2}\pm2.57\times10^{-1}$	$1.75\times 10^{-1}\pm 1.81\times 10^{-1}$
mChargedMultiplicity	$-9.83\times10^{-4}\ \pm 5.04\times10^{-3}$	$4.46\times 10^{-3}\pm 4.88\times 10^{-3}$	$-3.07\times10^{-3}\pm1.83\times10^{-2}$	$9.74 \times 10^{-3} \pm 1.51 \times 10^{-2}$
mNeutralMultiplicity	$-8.97\times10^{-4}\ \pm 1.42\times10^{-3}$	$1.56\times 10^{-3}\pm 1.93\times 10^{-3}$	$-5.36\times10^{-3}\pm7.37\times10^{-3}$	$7.34\times 10^{-3}\pm 6.60\times 10^{-3}$

Vivado Project - (in progress)

Prototype Specifications

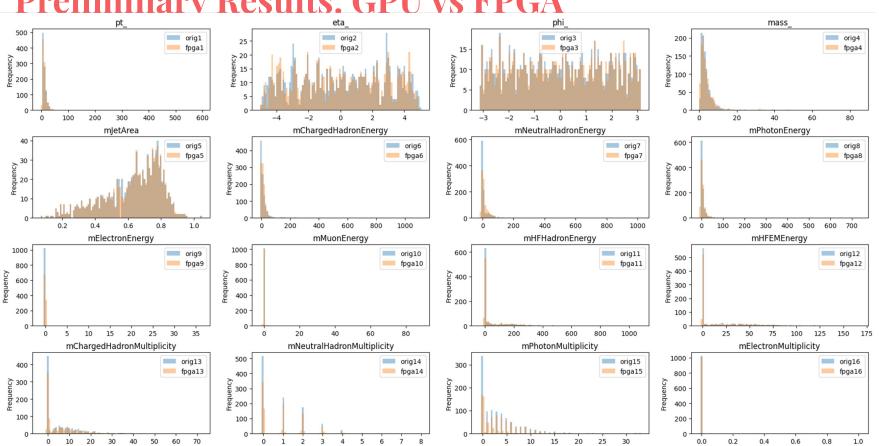
Synthesis Timing Estimation

Latency	(cycles)	Latency (absolute)	Interval	(cycles)	
min	max	min	max	min	max	Туре
12	12	60.000 ns	60.000 ns	1	1	function


Resource Utilization

Q 🛨 🌲 % Hiera	rchy																4
Name 1	CLB LUTs (1182240)	CLB Registers (2364480)	CARRY8 (147780)	F7 Muxes (591120)	F8 Muxes (295560)	CLB (147780)	LUT as Logic (1182240)	LUT as Memory (591840)	Block RAM Tile (2160)	DSPs (6840)	Bonded IOB (832)	HPIOB M (384)	HPIOB_ S (384)	HPIOB DIFFIN BUF (720)	GLOBAL CLOCK BUFFERs (1800)	MMCM (30)	BSCANE2 (12)
N baler_top	24545	10229	2535	125	28	5129	23862	683	38	653	2	1	1	1	2	1	1
> 😿 baler (tiny_model_0)	21889	4948	2462	0	0	4284	21889	0	0	653	0	0	0	0	0	0	
> 🛃 clk_inst (clk_wiz_0)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	
> 🛃 dbg_hub (dbg_hub)	461	753	7	0	0	159	429	32	0	0	0	0	0	0	1	0	
> 🛃 ila_inst (ila_0)	2080	4272	66	125	28	794	1429	651	30.5	0	0	0	0	0	0	0	
> 🗷 mem_inst (blk_mem_	0	0	0	0	0	0	0	0	7.5	0	0	0	0	0	0	0	
> 🐱 vio inst (vio 0)	99	231	0	0	0	52	99	0	0	0	0	0	0	0	0	0	

ILA Wave Diagram


aveform - hw_ila_1													? _ [
2 + − & ► :	» 🔳 🖪 🍳 🍳 💥	+[4)-I	18	er of fei	+F H								
LA Status: Idle			_	-		1	9						
Name	Value	0	5	10	μ5		20	125	l ₃₀	35	40	45	15
Vaddress[9:0]	00e	000	١X٠			$\overline{\odot}$							XOX
V data_in[255:0]	00000a0000011000000	000000000000	0			60							$\overline{\infty}$
lå data_in_vid	1	000											
le pred15_vld	1												
V pred0[15:0]	28ce			0011			000						X•X•
V pred1 [15:0]	0939			fff4									x
pred2[15:0]	fd52			0009									$\overline{\mathbf{x}}$
V pred3[15:0]	07fd			ff7d									xõ
V pred4[15:0]	fee4			0078								· X · X · X ffb8 .	xī
V pred5[15:0]	f586			ff5e									$\overline{x}\overline{x}$
V pred6[15:0]	Oclc			00c1									$\overline{\mathbf{x}}$
V pred7[15:0]	2a53			ffa3									xā
V pred8[15:0]	fe87			ff66									xō.
V pred9[15:0]	08f2		1	ff97									xī
pred10[15:0]	1b25		<u>.</u>	ffe0									xõ
pred11[15:0]	ffb0	. 5	T	0	5	10	-	15	20	25	30	35 40	

20/7/2024

Preliminary Results: Data vs FPGA

20/7/2024

Preliminary Results: GPU vs FPGA

20/7/2024

Community Development: ECRs

• Main contributors for this project: undergraduate/Master's students and summer students/interns

(IRIS-HEP Ukraine Fellows + GSoC through HSF + Trilateral Data Science exchange programs)

- **Huge amount** of **high quality** work completed by these junior members
- Students need training often limited or no prior software or ML experience
- Leadership and development decisions made by PhDs and PostDocs
 - James Smith (Mancs)
 - Support from (busy) academics (C. Doglioni (Mancs), N. Skidmore (Warwick))
- Short-term members can be variable and seasonal
 - Good OS code and documentation essential for fast onboarding
 - **Timeline planning** is important both for student, and for summer breaks when there are only academics with too many other projects
 - Careful selection key a poorly designed/matched project can cost more time than you gain!
 - Well defined, short projects good both for students and academics with limited time!

Community Development: Funding & Resources

- Use all the funding sources you can find, however small!
- BALER Members are part of EVERSE, SMARTHEP, and other large grants (Horizon 2020 ERC Consolidator grant, national grants)
- Received smaller grants to fund specific projects for short timelines useful for hiring RSEs from local pool, materials (FPGA boards), for semi-annual meetings, etc
- Received funding from departmental/institute level as well
 Received two "pump-prime" grants, but also funding for strategic international collaborations
- Also working with local (Swedish) industry students, "in-kind" resources

Community Development: Industry

- It's easy to get academics interested in your project...
 - But limited time/funding
 - 5-10 people with 5-10% of time each leads to slow progress
 - Work with RSEs / engineers! Speak to your research support team
- Industry much harder to attract
 - Email & cold-call a lot
 - Easier to contact companies in same city as your institute that have prior experience with your institute!
 - Must stress you're not after a job / their money!
 - However can provide useful experience in best practices and making your code easy to use by other people