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The Liquid Argon Calorimeter:

A crucial component of the ATLAS detector

end-cap (EMEC)

e Sofar, 160 fb™ p-p collision data were reconstructed , T -, 1 L( :
with high quality and precision ph ooy /R — -

e Designed to measure the time, position, and energy "' -
deposited by electrons and photons, and in L N - 3
addition, hadrons in the forward region i slsctomdonetic T ‘ P+

e ~180K readout channels - Lead, copper, and PR J—
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Energy deposits continuously sampled

TOWBI'CIS HL-LHC and digitized at 40 MHz :

= requires peak finder/trigger
The high luminosity phase of the LHC (HL-LHC) will (to select the correct BCIDs)
produce 140-200 simultaneous p-p interactions Real-time energies for triggers:
(pile-up), compared to the current value of around 40 = requires compact algorithms on

high-end FPGAs
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LAr Upgrade

pr— New off-detector electronics :
LAr Signal Processor (LASP)

tructe

LAr : e Two FPGAs (Intel Agilex) §
cells - ~Tb/s(~700 channels) o
— e ~300boards W

Upgrade of readout
electronic chain for Al
algorithms

e One FPGA should
process 384 channels

e About150ns
allocated latency for
energy computation

H/t: Fabrice Gensolen (CPPM)

A — [— s Test boards were built with
i1

w . kL . Stratix10, but production ones will
4

use higher grade Agilex FPGAs
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Energy reconstruction wi th NNSs Comput Softw Big Sci 5, 19 (2021)
LArCalo Upgrade Public Results

Two neural network types are tested:

Convolutional Neural Networks (CNN) - Developed by the TU Dresden group
and

Recurrent Neural Networks (RNN) - Developed by the CPPM group
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https://link.springer.com/article/10.1007/s41781-021-00066-y
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade

CNN For pulse tagging:

C N N Ste p 1 : PU lse ta g g | n g Trained to detect energy deposits 3¢ above noise (240 MeV) using

pulse samples for 8 bunch crossings

true energy
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—— tag prediction
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CNN For energy reconstruction:

CNN step 2: Energy inference

Energy reconstruction layers are added to the tagging

binary tag

Output layers and retrained together
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Recurrent Neural Networks

Designed for handling sequential data, RNNs consist of internal neural networks that process new
input combined with the past processed state

<1 <t e Extracts energy at all times (in-built pulse tagging)
t t

f . : , -
(s [RN ﬂ*RNN o<1 =" n o> ¢ Decides what information to forward in time
-y { = - ah) il " = Pulse span 20-30 BC, overlap ...
rt ot ot

|
<1> <2> <t> <t+1>
Pulse sampled = o — — Better performance, more stability in ti
at every BC —I—I ; ;,,T
Two RNN internal architectures explored: aeaf ) @ —{®— I
- fr it é o ¥
e Optimised For smaller number of parameters 4 @
e Long Short-Term Memory (LSTM) - 10 internal U Vanilla-RNN B LSTM
dimensions (89 parameters) (491 parameters

e Vanilla-RNN - 8 internal dimensions Higher complexity, bigger size on hard
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RNN applications: two methods

E; [GeV]

Single Cell Method:

v Long range correction, full signal is processed in a stream

~ B X Significant amount of complexity needed to process data in
SHHHEE ourse €@ time (LSTM only)
g e
NANRF D&) Sliding window Method (5 BC):
T 0*5*5* ...»4
L= » whn acbe sodn g ¢ Robust against long-lived effects due to unforeseen behaviour
_Z NRHE S of the detector, simpler training
SR @ Lm @ 0_»6_»6_»____»_{
| J » e xhe ot X Short range correction only (1 BCin the past)
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Pe I"FO rnmance . Comparisons on single LAr cell simulations

HL-LHC condition with pileup of 140 (AREUS software)
3 3
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Legacy algorithm:
5BCin the peak

e Legacy algorithm exhibits big distribution tails especially at low gap

e The tails are reduced significantly with all the new NN methods
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Comput Softw Big Sci 5, 19 (2021)

NN Performance:

HL-LHC condition with pileup of 140 AREUS Simulation
| EMB Middle (n,0) = (0.5125, 0.0125)
e Overall better energy scale and resolution for <> = 140, E™ > 240 MeV
all NNs with respect to OF_MAX T+ Mean Std-Dev
o Lower tails as seen from the 98% median | —— Median 98%range
range LSTM (single) A
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https://link.springer.com/article/10.1007/s41781-021-00066-y

Implementation on FPGAs

ANN model in Keras

Set of weights optimised by training
e architecture(layers, dimensions, ...)
Converter e Mathematical operations

(HLS and

VHDL)

e ALM: adaptive logic modules

e DSP: digital signal processors

e Fixed-point arithmetic, LUT for non-linear
FPGA firmware functions

Wi1 Wiz Wi X by

_ W1 Wz Wa3 X b,

=4 W31 W3z Wsg x (Xz) + b3

‘ Wa1 Wiaz Wys by
Activation function for non-linear element operations
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CNN Firmware Implementation

e CNNimplemented in VHDL with Full configurability -
o Configurable layer building blocks: 1/O, activation functions
o Configurable component connections: Kernel sizes, filters

per layer, dilation

e Model architecture parameters automatically extracted from Keras
output

e Designed to support pipelining and time-division multiplexing:
o Runs at 12 times the ADC frequency and processes 12
detector cells cyclically

e Calculations can be done in 18-bit fixed point numbers
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RNN Firmware Implementation: HLS T T e
e RNN initially implemented in Intel HLS which adds an additional g ‘ Iiiﬁﬂﬁjﬁv _
level of abstraction ‘A% RNDWD

o Advantages: fast and efficient optimisation of parameters 10 ' —
and implementation : : i3] ]

e Optimisation of arithmetic operations: 10°
o Different quantisation schemes tested for optimal fixed point
operation performance
o truncation(TRN) vs. rounding (RND) of internal type(l), I/O
type(D), and weight type(W) data categories

Py

(S e o B
0.01 0.02
E(firmware) - ET(software)

E (software)
L o T

T AT
[ R (HLS
i ~  placement

e Disadvantages: i ijﬂ@”"_'jfi‘f“‘
o Cannot achieve target frequency and resource utilisation B, oo sk N S
constraints when several instances of NNs are placed on the e T B B
same FPGA i 0 TR T
o During compilation, each instance gets different placement it T By o '?; :
shape, which, moreover, gets randomised between e g B L S
compilations — complicates optimisation of timing-critical | %8 Mgl St .
paths needed to reach higher frequency and multiplexing BN N T
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RNN Firmware Implementation: VHDL [

e Implementation in VHDL enables finer optimisations which are not tunable T
in HLS ‘

e Reuse of common computations:
o Common computations in cells differing only in time are propagated e —

| SO P sl N e |
.
- = = - 5 [ -

ol i %

| | Z 0

- - . = =26 e =

=12 £z
1 1 2

between each other at the proper time instead of recalculation,
unnecessary calculation for certain cells removed VHDL forced
o Reduction of DSP usage by 10%, ALM usage by 21% plac’ement; ! i
e Optimised placements: =
o Placement of 5 network cells designed to minimise distance between
them Secondcell | | Third cell
o Placement constraints force all NN instances to have the same shape
e Incremental compilation of multi-partitioned firmware design:
o Preserve partitions (1 NN instance each) that do not exhibit timing N
violations and recompile the rest until the target frequency is reached
for the whole design — reached 560 MHz with 28 NN instances within e e
4 compilations
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https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05017
https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05017

Estimation of FPGA Resource Usage

e Both CNN and RNN implementations in VHDL satisfy ATLAS requirements:

o Trigger latency = 150 ns
o Process 384 channels per FPGA with multiplexing

e Estimated resource usage based on Intel Quartus reports:

FPGA Network Multiplexing Channels F... [MHZ] ALMs DSPs
Stratix-10 RNN (HLS) 10 370 393 90% 100%
RNN (VHDL) 14 392 561 18% 66%

2-Conv CNN 12 396 415 8% 28%

4-Conv CNN 12 396 481 18% 27%

Agilex 2-Conv CNN 12 396 539 4% 13%
4-Conv CNN 12 396 549 9% 12%
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CNN and RNN networks outperform the optimal Filtering algorithm for the energy reconstruction in the
ATLAS LAr Calorimeter, particularly in the region with overlap between multiple pulses

Studies to quantify the effect on object (electrons, photons) reconstruction and physics performance is
underway using Phase-ll montecarlo samples and Athena simulation.

All networks are designed to reduce to a maximum the resource usage while keeping the performance
CNN and Vanilla RNN are serious candidates that can fit the stringent requirements on the LASP firmware
Network optimisations in VHDL allow reaching the requirements in terms of resource usage and latency

o Testing on hardware (Stratix10 DevKits) started and shows good results

o Need to check timing violations with all other components of the LASP firmware

Quantisation-aware training has proven to be effective in significantly reducing the required bit width for
number representation on the FPGA, thereby minimising resource usage
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Firmware vs. Software

e Energy computed with Quartus
simulation and verified on target

e (1%) resolution due to firmware
approximation, viz. LUT for activation
functions, Fixed point arithmetic
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