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The KOTO experiment aims to measure the Branching ratio (BR) of 

1

Introduction: The KOTO experiment

Theoretically predicted to be very small:

CP violating process

Any deviation from the this value measured experimentally 
would indicate physics beyond the SM

Experimental facility located 
at J-PARC

Data stored at the computing 
center at KEK

In the Ibaraki prefecture (Japan)

BR(                 ) ~ 3×10 -11



Introduction: The KOTO experiment

Kaon beam 
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~4000  readout 
channels

Analog waveforms
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Total E + nClusters trigger Event building
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Overview of KOTO's DAQ system
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beam  ON
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2s
5.2s -> 4.2sOFC: Optical Fiber center

Spill cycle : Beam on-off cycle.
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L1 module
Et, VETO

L2 module
clustering

From each ADC 
crate (18 total)
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Analog 
signals from 
the detector

From each CSI 
crate (11 total)

64-clock waveforms 
from all channels

CSI E, VETO 

L1 pass? L2 pass?

Each ADC channel

# CSI clusters

To event building block 
(OFC-I and OFC-II)

Trigger master

~ 2.4 µs 
(just latency) ~ 2.4 µs

0.16 µs  (20 clocks) per event

L1 trigger

ν ν

γ

γ

KL

Min. E in the 
CSI calorimeter

No E in veto 
detectors

Number of clusters in 
the CSI calorimeter 

L2 trigger
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Pipeline readout and trigger

16 channels per ADC module  |  16 modules per ADC crate  |  18 crates (11 just for the CSI calorimeter + 7 for VETO detectors)

Each ADC FPGA has enough memory to buffer data for 5.2 µs



Event building and the OFC modules

Enough memory to hold 46 events
Up to 50 kEvents/spill with two OFC-IIs
Target OFC-II is switched event by event

OFC-I OFC-II
Builds complete events from all OFC-I's data
Sends them to the HLT through a 40 Gbps link
Targets two HLT nodes per spill

The integrity of incoming data is checked every spill and every event.
If checks don't pass or buffers get full, errors are issued and DAQ stops until the next spill.

OFC-I
OFC-II
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OFC-II

2 Gbps 
x16 4 Gbps 

x18

4 Gbps 
x18

4 Gbps x2
36 Gbps x2

36 Gbps x2
4 Gbps x22 Gbps 

x16

2 Gbps

x18From 
ADCs To HLT

OFC-I

Odd events
Even events
Odd events Odd events

Even events
Odd events



The new GPU-based High Level 
Trigger of the KOTO experiment
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40 Gbps data capture

Hardware Kernel Application (HLT)

Thread 0
Ring 0

Ring 7 Thread 7

7

RAMDriver

40 Gbps input 
through a single 
40G connection

8 threads take in parallel packets 
from the NIC into 8 ring buffers

8 HLT threads retrieve those 
packets and move them to much 

larger buffers on the RAM

NIC

Threads involved in the 40G pcap are pinned to CPU cores with fastest access to the NIC
HLT's RAM allocated in the memory region that those CPUs have fastest access to.

The HLT nodes take advantage of the NUMA (Non Unified Memory Access) architecture:

Made possible thanks to Netmap, an open source framework for fast packet I/O[2]

[2] https://github.com/luigirizzo/netmap

From OFC-II



Event Reconstruction

hit time

Calibration constants obtained from cosmic 
data before beam time

Energy calculated for all CSI calorimeter 
channels with on-time hits

E = Integrated ADC x calibration constant

The clustering algorithm is an adaptation of the CLUE[1] 
algorithm, developed for CMSs new HGCAL:

Based on CSI calorimeter data

Ch-by-Ch Energy

Clustering

Assign weights to crystals based on their energy (color)
Find the closest higher-E neighbor (arrows)

Expand clusters from seeds

weight > threshold and 
no close neighbors with higher E

weight < threshold and 
no close neighbors with higher E

Seeds (  ): 

Outliers (  ): 
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Applied only needed loose cuts.

No clusters in the shaded area
Minimum total deposited energy in the calorimeter

Tighter selection is not needed, 
thanks to the reduction coming 
from Pedestal Suppression and 
Waveform Compression

(Next two slides)

Trigger

(6 clus.)

(5 clus.)

Total

1.5 k/spill 

2.0 k/spill

5.7 k/spill

4.2 k/spill

2.4 k/spill

1.9 k/spillOthers

17.7 k/spill (20.0 Gbps)

HLT-input rate (Spring 2024)

Unchanged

Unchanged

/ 1.25 ( > 98.7% eff.)

/ 1.30 ( > 98.7% eff.)

/ 1.20 ( > 99.3% eff.)

Unchanged

9
17.2 Gbps

Rate after event selection



Pedestal Suppression

Most channels without hit output very flat waveforms (noise) 
that do not contain relevant information. 

Only ~40 of the almost 3000 CSI channels are hit per event
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CSI channel

In practice, the suppression criteria is set to E ∈ (-2 MeV, 1 MeV)

Waveforms from the main physics trigger and 
other special triggers
Waveforms from all veto detectors.
Waveforms from low-gain CSI calorimeter channels

A
< 0.1 %

Exempt from being suppressed are:
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Waveform compression

64 bins minimum 
(16 bits)

+
64 bins

N bits
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Conceptually very simple:

Lossless

Powerful

Very suitable for GPUs

B

Applied to all waveforms of all events

Average compression factor of 3

No complex operations involved
Can be applied independently to all waveforms



Trigger

(6 clus.)

(5 clus.)

Largest reduction factors come from pedestal suppression and waveform compression

C

No strict selection needed this time to overcome the J-PARC to KEK bandwidth bottleneck

Total

1.5 k/spill 

2.0 k/spill

5.7 k/spill

4.2 k/spill

2.4 k/spill

1.9 k/spillOthers

17.7 k/spill (20.0 Gbps)

HLT-input rate 
(Spring 2024 physics runs)

Results: Data rate reduction at the HLT

Unchanged

Unchanged

/ 1.25

/ 1.30

/ 1.20

Unchanged

17.2 Gbps

Rate after event selection

/ 3.2

/ 5.3

/ 5.4

/ 5.3

/ 5.3

/ 4.1

3.6 Gbps

rate after compression and 
ped. suppression



Conclusion

KOTO has successfully taken data this Spring after a major DAQ upgrade

Together with the main                  data, KOTO is able to collect for the first time               (5 
hits on the calorimeter) to study veto inefficiencies, and                    , to study the feasibility of its 
future BR measurement.

The current DAQ HW has the potential to take physics data at up to 50 kEvents / spill
x2.5 higher than current rate

Large margin to tighten the current event selection and/or to add more cuts at the HLT

Event building performed in FW, so the HLT gets complete events.
Event selection and further data reduction implemented on GPU at the HLT

D



Backup



Optical Link error: 

Error monitoring at the OFC modules

Data alignment error:

Known data is received and checked at the beginning of every spill

whether data has been received from all inputs is checked event by event

Busy error: 
Issued when input > output and memory starts becomes full



Pedestal suppression inefficiency

Channels with low gain are masked, as their low peak/noise ratio makes the PS less efficient
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Pedestal suppression inefficiency: Results in physics runs
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Average channel PS inefficiency after masking low-gain channels is 0.09 %
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Pedestal suppression inefficiency: Results in physics runs

Average suppression rate is 86 %
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PH < 10 counts (roughly 1 MeV) imposed together with the E criteria

When the E criteria fails



Event reconstruction and event selection efficiencies

1: Non-selected data -> to OFC2 format -> Fed back to the L3 -> calculate eff. for different thresholds. (left fig.)

2: Thresholds are put into the L3 sw -> special "tagging" runs are taken -> expectations are verified during actual 
physics runs (right fig.)
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Event reconstruction and event selection efficiencies
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Efficiencies were high and stable 
during the run. (green is right after 
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Notes about online L3 reconstruction and selection

COE cuts for pi0ee and 5g were not applied, as the data rate was found to be within requirements even without 
the cuts. They still have great potential and could be used in the future.

Only fiducial (MinXY and MaxR) cuts applied to 5g,  Fid + TotalE cuts are applied to K+ and pi0ee

The efficiency calculation implies that the offline reconstruction is perfect.
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The denominator of the efficiency does not include offline cluster-shape and mode-specific offline cuts.





= nEvents recorded offline / nEvents at OFC-II output, using only spills where L1A and OFC-II output are equal.
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DAQ efficiency in run91 
Overall DAQ efficiency
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packet redirection

SRC MAC DST MAC

EtherType

32-bit hash

9 LSBs

mod 8

To decimal

Incoming
packet Payload (9000 bytes) CRC

Toeplitz hash
function Redirection table

Queue No.



Online clustering
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CLUE (the grid)
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Compression factors
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