The Data-Acquisition System and new GPU-based High Level Trigger of the KOTO Experiment

July 19, 2024

Mario Gonzalez (Osaka University) on Behalf of the KOTO Collaboration

1

- CP violating process
- Theoretically predicted to be very small: $BR(K_L \to \pi^0 \nu^2)$

Introduction: The KOTO experiment

Any deviation from the this value measured experimentally would indicate physics beyond the SM

> *Experimental facility located at J-PARC center at KEK*

Data stored at the computing

In the Ibaraki prefecture (Japan)

EXA) The KOTO experiment aims to measure the Branching ratio (BR) of $K_L \rightarrow \pi^0 \nu \overline{\nu}$

$$
\overline{\nu}) \sim 3 \times 10^{-11}
$$

HLT

Overview of KOTO's DAQ system

beam OFF

OFC: Optical Fiber center 5.2s -> 4.2s

beam ON Spill cycle : Beam on-off cycle.

Min. E in the CSI calorimeter

Pipeline readout and trigger

16 channels per ADC module | 16 modules per ADC crate | 18 crates (11 just for the CSI calorimeter + 7 for VETO detectors)

- **Enough memory to hold 46 events**
- **Up to 50 kEvents/spill with two OFC-IIs**
- Target OFC-II is switched event by event

Event building and the OFC modules **OFC-I OFC-II**

- Builds complete events from all OFC-I's data
- Sends them to the HLT through a 40 Gbps link
- **Targets two HLT nodes per spill**

The integrity of incoming data is checked every spill and every event. • If checks don't pass or buffers get full, errors are issued and DAQ stops until the next spill.

-
-

To HLT

40 Gbps data capture

Made possible thanks to Netmap, an open source framework for fast packet I/O[2]

packets and move them to much larger buffers on the RAM

Threads involved in the 40G pcap are pinned to CPU cores with fastest access to the NIC **HLT's RAM allocated in the memory region that those CPUs have fastest access to.** The HLT nodes take advantage of the NUMA (Non Unified Memory Access) architecture:

-
-

[2] https://github.com/luigirizzo/netmap

Event Reconstruction

- $E = Integrated ADC \times calibration constant$
	- *Energy calculated for all CSI calorimeter channels with on-time hits*
	- *Calibration constants obtained from cosmic data before beam time*

The clustering algorithm is an adaptation of the CLUE[1] algorithm, developed for CMSs new HGCAL:

Based on CSI calorimeter data

Ch-by-Ch Energy

Clustering

- Assign weights to crystals based on their energy (color) *1.*
- 2. Find the closest higher-E neighbor (arrows)
	- Seeds (0) : weight > threshold and no close neighbors with higher E
	- Outliers (x) : weight < threshold and no close neighbors with higher E
- Expand clusters from seeds *3.*

Event Selection

Applied only needed loose cuts.

No clusters in the shaded area Minimum total deposited energy in the calorimeter

events that pass the online and offline selection \circ L3 efficiency $=$ events that pass the offline selection

Tighter selection is not needed, thanks to the reduction coming from Pedestal Suppression and

Waveform Compression

(Next two slides)

Total

17.7 k/spill (20.0 Gbps)

Pedestal Suppression

- Only ~40 of the almost 3000 CSI channels are hit per event
- Most channels without hit output very flat waveforms (noise) that do not contain relevant information.

 \circ In practice, the suppression criteria is set to E \in (-2 MeV, I MeV)

- Waveforms from the main physics trigger and other special triggers
- Waveforms from all veto detectors.
- Waveforms from low-gain CSI calorimeter channels

waveforms accepted offline and suppressed online $P.S.inefficientcy =$ waveforms accepted offline

 $< 0.1 \%$

Exempt from being suppressed are:

Waveform compression

=

Conceptually very simple:

Lossless

Powerful

Very suitable for GPUs

Applied to all waveforms of all events

Average compression factor of 3

No complex operations involved

Can be applied independently to all waveforms

Largest reduction factors come from pedestal suppression and waveform compression

No strict selection needed this time to overcome the J-PARC to KEK bandwidth bottleneck

Results: Data rate reduction at the HLT

Conclusion

- KOTO has successfully taken data this Spring after a major DAQ upgrade
	- **Event building performed in FW, so the HLT gets complete events.**
	- Event selection and further data reduction implemented on GPU at the HLT
- Together with the main $K_L \to \pi^0 \nu \overline{\nu}$ data, KOTO is able to collect for the first time $K_L \to 3\pi^0$ (5 hits on the calorimeter) to study veto inefficiencies, and $K_L \to \pi^0 e^+ e^-$, to study the feasibility of its

future BR measurement.

⊳ x2.5 higher than current rate

- The current DAQ HW has the potential to take physics data at up to 50 kEvents / spill
- Large margin to tighten the current event selection and/or to add more cuts at the HLT

Backup

Error monitoring at the OFC modules

Optical Link error: Known data is received and checked at the beginning of every spill

Data alignment error:

Busy error:

Issued when input > output and memory starts becomes full

-
- whether data has been received from all inputs is checked event by event
	-

Pedestal suppression inefficiency

Channels with low gain are masked, as their low peak/noise ratio makes the PS less efficient

Pedestal suppression inefficiency: **Results in physics runs**

Average channel PS inefficiency after masking low-gain channels is 0.09 %

Average suppression rate is 86 %

Pedestal suppression inefficiency: **Results in physics runs**

Time (125 MHz clocks)

PH < 10 counts (roughly 1 MeV) imposed together with the E criteria

When the E criteria fails

Event reconstruction and event selection efficiencies

L3 efficiency = $\frac{\text{\# events that pass the online and offline selection}}{\text{\# events that pass the ones, the efficiency of the solution.}}$ $#$ events that pass the offline selection

1: Non-selected data -> to OFC2 format -> Fed back to the L3 -> calculate eff. for different thresholds. (left fig.)

2: Thresholds are put into the L3 sw -> special "tagging" runs are taken -> expectations are verified during actual physics runs (right fig.)

measure the inefficiencies during real physics runs

Event reconstruction and event selection efficiencies

Table 9.1: Combined efficiency and rejection power of all L3 cuts applied to the 5γ , K^+ and $K_L \rightarrow \pi^0 e^+ e^-$ triggers.

Notes about online L3 reconstruction and selection

COE cuts for pi0ee and 5g were not applied, as the data rate was found to be within requirements even without

-
- the cuts. They still have great potential and could be used in the future.

Only fiducial (MinXY and MaxR) cuts applied to 5g, Fid + TotalE cuts are applied to K+ and pi0ee

The efficiency calculation implies that the offline reconstruction is perfect.

The denominator of the efficiency does *not* include offline cluster-shape and mode-specific offline cuts.

= *nEvents recorded offline / nEvents at OFC-II output*, using only spills where L1A and OFC-II output are equal.

run (a.u.) # collected events per run (a.u.)# collected events per

DAQ efficiency in run91 **L3 efficiency**

DAQ efficiency in run91 Overall DAQ efficiency

run (a.u.) # collected events per run (a.u.)per events collected $#$

RDMA

packet redirection

Queue No.

Online clustering

CLUE (the grid)

Online pedestal calculation

Compression factors

Circular buffers

Linear buffer Circular buffer

