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Targeting to record large minimum bias sample.

- All collisions stored for main detectors → no trigger

- Continuous readout → data in drift detectors overlap

- Recording time frames of continuous data, instead of events

- 100x more collisions, much more data

- Cannot store all raw data → online compression

→ Use GPUs to speed up online (and offline) processing

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 – 20 ms in production).

- Tracks of different collisions shown in different colors.

ALICE in Run 3
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The ALICE detector in Run 3

• ALICE uses mainly 3 detectors for barrel tracking: ITS, TPC, TRD + (TOF)

• 7 layers ITS (Inner Tracking System – silicon tracker)

• 152 pad rows TPC (Time Projection Chamber)

• 6 layers TRD (Transition Radiation Detector)

• 1 layer TOF (Time Of Flight Detector)

• ALICE performs continuous readout.

• Native data unit is a time frame: all data from

a configurable period of data up to 256 LHC orbits.

• Current default since 2023 is ~2.8 ms (32 LHC orbits)
ITS

TPC

TRD

TOF
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• Online processing:

• Extract information for detector calibration:

– Previously performed in 2 offline passes over the data after the data taking

– Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

– An intermediate step between sync. and async. processing produces the final calibration objects

– The most complicated calibration is the correction for the TPC space charge distortions

O2 Processing steps

Needs tracking of 

1% of tracks
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• Online processing:

• Extract information for detector calibration:

– Previously performed in 2 offline passes over the data after the data taking

– Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

– An intermediate step between sync. and async. processing produces the final calibration objects

– The most complicated calibration is the correction for the TPC space charge distortions

• Data compression:

– TPC is the largest contributor of raw data, and we employ sophisticated algorithms like

storing space point coordinates as residuals to tracks to reduce the entropy and remove

hits not attached to physics tracks

– We use ANS entropy encoding for all detectors
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• Data compression:

– TPC is the largest contributor of raw data, and we employ sophisticated algorithms like

storing space point coordinates as residuals to tracks to reduce the entropy and remove

hits not attached to physics tracks

– We use ANS entropy encoding for all detectors

• Event reconstruction (tracking, etc.):

– Required for calibration, compression, and online quality control

– Need full TPC tracking for data compression

– Need tracking in all detectors for ~1% of the tracks for calibration

→ TPC tracking dominant part, rest almost negligible (< 5%)
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• Online processing:

• Extract information for detector calibration:

– Previously performed in 2 offline passes over the data after the data taking

– Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

– An intermediate step between sync. and async. processing produces the final calibration objects

– The most complicated calibration is the correction for the TPC space charge distortions

• Data compression:

– TPC is the largest contributor of raw data, and we employ sophisticated algorithms like

storing space point coordinates as residuals to tracks to reduce the entropy and remove

hits not attached to physics tracks

– We use ANS entropy encoding for all detectors

• Event reconstruction (tracking, etc.):

– Required for calibration, compression, and online quality control

– Need full TPC tracking for data compression

– Need tracking in all detectors for ~1% of the tracks for calibration

→ TPC tracking dominant part, rest almost negligible (< 5%)

• Offline processing (what we called offline before):

• Full reconstruction, full calibration, all detectors

• TPC part faster than in online processing (less hits, no clustering, no compression)

→ Different relative importance of GPU / CPU algorithms compared to online processing

O2 Processing steps

Rows

Row, Pad, Time X, Y, Z

Forward-transformation

Clusters

Local distortions

remain

Back-transformation

Track

Track in distorted 

coordinates

Needs tracking of 

1% of tracks

Needs 100% 

TPC tracking

mailto:drohr@cern.ch


19.7.2024 David Rohr, drohr@cern.ch 12

• ALICE has a long history of GPU usage in the online systems, and since 2023 also for offline:

GPU usage in ALICE in the past

2010

64 * NVIDIA GTX 480 in Run 1

Online TPC tracking

2015

180 * AMD S9000 in Run 2

Online TPC tracking

Today

~3000 * AMD MI50/MI100 in Run 3

Online and Offline barrel tracking
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• Could use GPUs in online reconstruction, offline reconstruction, simulation, analysis, ...

• Online computing constrained to on-site farm: fully under our control, GPUs can provide the required compute power.

• Main purpose of GPU in online farm: Keep step with online processing rate.

• Everything else is nice but secondary – and also general / GRID computing more heterogeneous.

Where to use GPUs?

Processing step % of time

TPC Processing (Tracking) 61.41 %

ITS TPC Matching 6.13 %

MCH Clusterization 6.13 %

TPC Entropy Decoder 4.65 %

ITS Tracking 4.16 %

TOF Matching 4.12 %

TRD Tracking 3.95 %

MCH Tracking 2.02 %

AOD Production 0.88 %

Quality Control 4.00 %

Rest 2.32 %

Online reconstruction

(50 kHz Pb-Pb, MC data, no QA / calib)

Offline processing

(650 kHz pp, 2022, no Calorimeters)

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Processing step % of time

TPC Processing (Tracking) 52.39 %

ITS Tracking 12.65 %

Secondary Vertexing 8.97 %

MCH 5.28 %

TRD Tracking 4.39 %

TOF Matching 2.85 %

ITS TPC Matching 2.64 %

Entropy Decoding 2.63 %

AOD Production 1.72 %

Quality Control 1.64 %

Rest 4.84 %

Offline processing

(47 kHz Pb-Pb, 2024)

Relative CPU time (linux cputime) with full processing on CPU
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• Could use GPUs in online reconstruction, offline reconstruction, simulation, analysis, ...

• Online computing constrained to on-site farm: fully under our control, GPUs can provide the required compute power.

• Main purpose of GPU in online farm: Keep step with online processing rate.

• Everything else is nice but secondary – and also general / GRID computing more heterogeneous.

GPU usage for online reconstruction

Online reconstruction

(50 kHz Pb-Pb, MC data, no QA / calib)

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Online processing fully 

dominated by TPC

Running on GPU in baseline scenario

1st GPU offload phase – mandatory for online

EPN farm designed for online processing

• Optimized for 50 kHz Pb-Pb (peak rate).

• Known from Run 1 & 2 GPU experience that TPC tracking is 

well suited to run on GPUs.

• Need only enough CPU power and memory buffers to keep 

GPUs busy.

• Exact total % of TPC depends on how much CPU is used for 

network IO, event building, quality control, etc., but in any case 

95 – 99%.

• CPUs represent at least 10% of the node’s compute 

capacity, thus absolutely no reason to offload >90%.

• Makes code more complicated for no benefit.

• GPUs should be at high but not full load, aimed for 30% GPU 

compute margin.

• Nodes will be broken, unforeseen things happen, ...

mailto:drohr@cern.ch


19.7.2024 David Rohr, drohr@cern.ch 15

• Performance of Alice O2 software on different GPU models and compared to CPU.

• GPU speedup fully linear, no superlinear complexity.

• ALICE uses 2240 MI50 and 560 MI100 GPUs in the online farm.

• MI50 GPU replaces ~80 AMD Rome CPU cores in online reconstruction.

• ~55 CPU cores in offline reconstruction (different algorithm mix).

• MI100 GPUs ~40% faster.

Online processing performance

Without GPUs, more than 3000

64-core servers would be needed for 

online processing!

GPUs mandatory for ALICE in Run 3.
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Implementation details

• Multiple GPUs in a server minimize the cost.

• Less servers, less network.

• Synergies of using the same CPU components for multiple GPUs, same for memory.

• Splitting the node into 2 NUMA domains minimizes inter-socket communication 

→ 2 virtual EPNs.

• Still only 1 HCA for the input → writing to shared memory segment in interleaved memory.

• GPUs are processing individual time frames → no inter-GPU communication.

• Host processes can drive 1 GPU each, or run CPU only tasks.

• GPUs can be shared between algorithms.

• With memory reuse if within the same process.

• With separate memory in case of multiple processes (Not done at the moment).

• Benchmarked with MC data: For 100% utilization of 8 GPUs (AMD MI50), we need:

• ~50 CPU cores, ~400 GB of memory, 30 GB/s network input speed, GPU PCIe negligible.
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Implementation details

• Multiple GPUs in a server minimize the cost.

• Less servers, less network.

• Synergies of using the same CPU components for multiple GPUs, same for memory.

• Splitting the node into 2 NUMA domains minimizes inter-socket communication 

→ 2 virtual EPNs.

• Still only 1 HCA for the input → writing to shared memory segment in interleaved memory.

• GPUs are processing individual time frames → no inter-GPU communication.

• Host processes can drive 1 GPU each, or run CPU only tasks.

• GPUs can be shared between algorithms.

• With memory reuse if within the same process.

• With separate memory in case of multiple processes (Not done at the moment).

• Benchmarked with MC data: For 100% utilization of 8 GPUs (AMD MI50), we need:

• ~50 CPU cores, ~400 GB of memory, 30 GB/s network input speed, GPU PCIe negligible.

• Selected server:

• Supermicro AS-4124GS-TNR, 8 * MI50 GPU, 2 * 32 core AMD Rome 7452 CPU (2.35 GHz), 512 GB RAM (16 * 32GB)

• Infiniband HDR / HDR100 network.
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Implementation details

•

•

→

•

•

•

•

•

•

NUMA Domain 1Online processing

DPL workflow

Input goes to 

interleaved memory

NUMA Domain 2

4 processes 

and 4 GPUs per 

NUMA domain

For details on DPL workflows,

see talk about SW status.
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Implementation details

•

•

→
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•
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•

•

•

NUMA Domain 1Online processing

DPL workflow

Input goes to 

interleaved memory

NUMA Domain 2

4 processes 

and 4 GPUs per 

NUMA domain

For details on DPL workflows,

see talk about SW status.

Multiplicities of CPU tasks are tuned 

manually to have the same throughput as 

GPU processing: e.g. 7 TPC ITS matcher 

tasks for online.

Simple for online due to fixed EPN farm 

setup, but will be challenging for GPU 

usage in heterogeneous GRID servers.
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Experience from online processing

• The EPN farm easily handled the online processing.

• Peak Pb-Pb rate in 2023 was 47 kHz (slightly less than nominal 50 kHz).

• CPU peak load was 32 of 64 cores used (design foresaw 44 cores used, but software was optimized since).

• Gives headroom to run additional QC, etc.

• Minimum free memory: 30%.

• Average GPU peak load at peak rate over the farm was 82.5% → 17.5% margin left (v.s. 30% design margin).

• TPC data size ~6% higher than expected from simulations.

• 7 servers not in data taking (in maintenance or excluded for parallel standalone tests).

• Decided to run some additional algorithms on GPUs, e.g. online TPC dEdx, reducing the margin slightly.

• Some software improvements are ongoing (some already deployed), and we aim to get back to 30% margin despite 

the additional processing on GPUs.

mailto:drohr@cern.ch
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Experience with GPUs from admin / hardware side

• More GPU failures than other components, still below 3% since purchase in LS2, as expected:

• 8 GPUs per server

• Each GPU has its own memory, voltage regulator, complicated board, etc. in addition to the GPU chip.

• Second highest are RAM modules.

• Majority (>80%) of failures in burn-in phase (first few months)

• Vendors are prioritizing first ML, second HPC centers that need FP64, HEP is a special and small customer.

• HEP code is more complex than most ML / HPC code, can be challenging for the compilers.

• Good support with fast turnaround is critical.

• Once everything is running, one could say “never touch a running system”, but our software is constantly evolving...

• Running heterogeneous nodes (MI50 with 64 physical CPU cores, MI100 with 96 physical cores) quite smooth, no 

experience with more different nodes, e.g. different vendors.
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GPU usage for offline reconstruction

Online reconstruction

(50 kHz Pb-Pb, MC data, no QA / calib)

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Online processing fully 

dominated by TPC

Running on GPU in baseline scenario

1st GPU offload phase – mandatory for online

Baseline scenario covers online, which is 99% TPC.

Optimistic scenario shall improve GPU usage in offline.

Running on GPU in optimistic scenario

2nd GPU offload phase – improve offline

mailto:drohr@cern.ch
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GPU usage for offline reconstruction

Online reconstruction

(50 kHz Pb-Pb, MC data, no QA / calib)

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Running on GPU in baseline scenario

1st GPU offload phase – mandatory for online

Running on GPU in optimistic scenario

2nd GPU offload phase – improve offline

Candidate for GPU offload in optimistic scenario: Central Barrel Global Tracking Chain

• Consecutive processing steps, thus no need to transfer forth and back between host and GPU.

• Most task tracking related, and can operate on many tracks in parallel.

TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TPC 

dE/dx

ITS 

Afterburner

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

V0 

Finding

TPC Track Model 

Compression

TPC Entropy 

Compression

TPC 

Track Fit

In operation

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Part of optimistic 

scenario

Identify hits 

below 10MeV/c
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GPU usage for offline reconstruction

Processing step % of time

TPC Processing (Tracking) 61.41 %

ITS TPC Matching 6.13 %

MCH Clusterization 6.13 %

TPC Entropy Decoder 4.65 %

ITS Tracking 4.16 %

TOF Matching 4.12 %

TRD Tracking 3.95 %

MCH Tracking 2.02 %

AOD Production 0.88 %

Quality Control 4.00 %

Rest 2.32 %

Online reconstruction

(50 kHz Pb-Pb, MC data, no QA / calib)

Offline processing

(650 kHz pp, 2022, no Calorimeters)

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Processing step % of time

TPC Processing (Tracking) 52.39 %

ITS Tracking 12.65 %

Secondary Vertexing 8.97 %

MCH 5.28 %

TRD Tracking 4.39 %

TOF Matching 2.85 %

ITS TPC Matching 2.64 %

Entropy Decoding 2.63 %

AOD Production 1.72 %

Quality Control 1.64 %

Rest 4.84 %

Offline processing

(47 kHz Pb-Pb, 2024)

Running on GPU in baseline scenario

1st GPU offload phase – mandatory for online

Running on GPU in optimistic scenario

2nd GPU offload phase – improve offline

Baseline scenario:

~60% on GPU

→ 2.5x speedup

Optimistic scenario:

~80% on GPU

→ 5x speedup
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Real speedup in offline reconstruction (2023, baseline)

• For offline reconstruction, EPN nodes are used as GRID nodes.

• Identical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.

• EPN farm split in 2 scheduling pools: online and offline.

– Unused nodes in the online pool are moved to the offline pool.

– As needed for data-taking, nodes are moved to the online pool with lead time to let the current jobs finished.

– If needed immediately, GRID jobs are killed and nodes moved immediately.
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Real speedup in offline reconstruction (2023, baseline)

• For offline reconstruction, EPN nodes are used as GRID nodes.

• Identical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.

• EPN farm split in 2 scheduling pools: online and offline.

– Unused nodes in the online pool are moved to the offline pool.

– As needed for data-taking, nodes are moved to the online pool with lead time to let the current jobs finished.

– If needed immediately, GRID jobs are killed and nodes moved immediately.

• Performance benchmarks cover multiple cases:

• EPN split into 16 * 8 cores, or into 8 * 16 cores, ignoring the GPU : to compare CPUs and GPUs.

• EPN split into 8 or 2 identical fractions: 1 NUMA domain (4 GPUs) or 1 GPU.

• Processing time per time-frame while the GRID job is running (neglecting overhead at begin / end).

• In all cases server fully loaded with identical jobs, to avoid effects from HyperThreading, memory, etc.

For a fair comparison, needed to determine the fastest CPU-only 

and fastest GPU configuration of offline reconstruction.

For all settings, obtained the optimal process multiplicity tuning 

settings.
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Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) Time per TF (11ms, full server)

CPU 8 core 76.91s 4.81s

CPU 16 core 34.18s 4.27s

1 GPU + 16 CPU cores 14.60s 1.83s

1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s

Real speedup in offline reconstruction (2023, baseline)

• For offline reconstruction, EPN nodes are used as GRID nodes.

• Identical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.

• EPN farm split in 2 scheduling pools: online and offline.

– Unused nodes in the online pool are moved to the offline pool.

– As needed for data-taking, nodes are moved to the online pool with lead time to let the current jobs finished.

– If needed immediately, GRID jobs are killed and nodes moved immediately.

• Performance benchmarks cover multiple cases:

• EPN split into 16 * 8 cores, or into 8 * 16 cores, ignoring the GPU : to compare CPUs and GPUs.

• EPN split into 8 or 2 identical fractions: 1 NUMA domain (4 GPUs) or 1 GPU.

• Processing time per time-frame while the GRID job is running (neglecting overhead at begin / end).

• In all cases server fully loaded with identical jobs, to avoid effects from HyperThreading, memory, etc.
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Configuration used for async processing on EPNs.

(Also resembles most the online processing 

configuration)
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Offline reconstruction on GPU : plans

• Gradually shifting to running more steps on GPU (optimistic scenario).

• Several components seem ready, but integration is pending...

– ITS and TPC standalone tracking can run on GPU, but not yet within the same process.

– TRD tracking on GPU is ready, but needs TPC-ITS matched tracks as input, which are not yet available on GPUs.

• But GPU usage is slowly increasing.

– TPC CTF track model decoding was ported to GPU recently, yielding 1.5% to 5% speedup in 2024 (depending on 

which data).

– Done by a master student in 6 months, showing that the framework can be used by newcomers to move code to GPU.
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Offline reconstruction on GPU : plans

• Gradually shifting to running more steps on GPU (optimistic scenario).

• Several components seem ready, but integration is pending...

– ITS and TPC standalone tracking can run on GPU, but not yet within the same process.

– TRD tracking on GPU is ready, but needs TPC-ITS matched tracks as input, which are not yet available on GPUs.

• But GPU usage is slowly increasing.

– TPC CTF track model decoding was ported to GPU recently, yielding 1.5% to 5% speedup in 2024 (depending on 

which data).

– Done by a master student in 6 months, showing that the framework can be used by newcomers to move code to GPU.

• Facing 2 challenges running on other GPU models in the GRID:

• Need to provide software compiled for the on-site GPU model on CVMFS.

– So far have a list of AMD and NVIDIA GPU types for which we compile.

– Compile time increases by ~3 minutes per GPU type, cannot simply compile for all models.

– Using run time compilation for optimizations, could compile for additional GPU types on the fly.

• Process multiplicity tuning depending on number of CPU cores / GPU model performance.

– Currently setting up for test on NERSC site.

– Can get interactive sessions for testing.

– Similar to EPN, 64 cores, 1 NVIDIA GPU, but more powerful than MI50, so fits for 64 cores.
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Online v.s. Offline on GPU

• Online:

• Time frames come in at fixed rate, and processing needs to keep up.

• Aiming for “GPU-bound” processing at ~70% GPU load (30% margin) – load during 2023 Pb-Pb was 82.5% load.

• CPUs should stay below 70% load – load during 2023 Pb-Pb was ~50%.
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Online v.s. Offline on GPU

• Online:

• Time frames come in at fixed rate, and processing needs to keep up.

• Aiming for “GPU-bound” processing at ~70% GPU load (30% margin) – load during 2023 Pb-Pb was 82.5% load.

• CPUs should stay below 70% load – load during 2023 Pb-Pb was ~50%.

• Offline:

• We can define the time frame publishing rate at the source.

– Naive approach: publish as fast as possible with limiting the maximum number of time frames in flight.

– Yields oscillations in the processing chain...

CPU load with TFs injected as fast as possible, 

(only limited by max TF in flight in memory)

→ Leads to strong CPU load oscillations.
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Online v.s. Offline on GPU

• Online:

• Time frames come in at fixed rate, and processing needs to keep up.

• Aiming for “GPU-bound” processing at ~70% GPU load (30% margin) – load during 2023 Pb-Pb was 82.5% load.

• CPUs should stay below 70% load – load during 2023 Pb-Pb was ~50%.

• Offline:

• We can define the time frame publishing rate at the source.

– Naive approach: publish as fast as possible with limiting the maximum number of time frames in flight.

– Yields oscillations in the processing chain, better to smoothen the publishing rate.

CPU load with smoothened publishing rate.
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Online v.s. Offline on GPU

• Online:

• Time frames come in at fixed rate, and processing needs to keep up.

• Aiming for “GPU-bound” processing at ~70% GPU load (30% margin) – load during 2023 Pb-Pb was 82.5% load.

• CPUs should stay below 70% load – load during 2023 Pb-Pb was ~50%.

• Offline:

• We can define the time frame publishing rate at the source.

– Naive approach: publish as fast as possible with limiting the maximum number of time frames in flight.

– Yields oscillations in the processing chain, better to smoothen the publishing rate.

• Aiming for 100% CPU load, and offloading as much as possible to GPU.

– Processing CPU-bound, even inefficient GPU offload will decrease the wall time.

• Baseline scenario on EPNs: 60% of workload on GPUs, but GPUs have

90% of the compute power

→ GPU load < 50%.

– Running with 2 instead of 4 GPUs on the EPN gives the same performance

– Thus NVIDIA system with 1 fast GPU can keep up.
CPU load with smoothened publishing rate.
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• Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).

• OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing)

• Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library

• All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers

• Screening different platforms for best price / performance.
(including some non-competitive platforms for cross-checks and validation.)

• CPUs (AMD Zen, Intel Skylake)

C++ backend with OpenMP, AMD OCL

• AMD GPUs

(S9000 with OpenCL 1.2, MI50 /

Radeon 7 / Navi with HIP / OCL 2.x)

• NVIDIA GPUs

(RTX 2080 / RTX 2080 Ti / Tesla T4

with CUDA)

• ARM Mali GPU with OCL 2.x

(Tested on dev-board with Mali G52)

Plugin system for multiple APIs with common source code
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Conclusions

• ALICE employs GPUs heavily to speed up online and offline processing.

• 99% of online reconstruction on the GPU (no reason at all to port the rest).

• Since 2023 ~60% of full offline processing (for 650 kHz pp) on GPU (if offline jobs on the EPN farm).

– Aim to increase to 80% with full barrel tracking on GPU (optimistic scenario).

– Proof of concept workflow running also on server with NVIDIA GPUs, next step is to test at NERSC.

• Online processing successful in 2021 - 2024.

• pp data taking and Pb-Pb went smooth up to the highest Pb-Pb rate (47 kHz) in 2023.

• GPU Compute margin was 17.5%.

• Future improvements should restore the 30% design margin.

• Online farm would need >3000 64-core servers if built with CPUs only – prohibitively expensive.

• Offline reconstruction runs TPC reconstruction on the GPUs in the EPN farm, and in CPU-only style on the CERN 

GRID site.

• EPN nodes are 2.5x faster when using GPUs.

• Optimistic scenario should increase this to 5x.

• Working on first test to run with GPUs (of different vendor) on GRID sites (NERSC).
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Lessons learned

• GPUs can speed up the processing significantly.

• Not necessarily all workloads needs to run on GPU, but the hot spot.

• Inexperienced users can contribute improvements to algorithms, for implementing full new reconstruction steps on 

GPU more expert knowledge is needed.

• Scheduling for online and offline processing is different.

• Should also optimize for memory perhaps sacrificing a bit of performance.

• ALICE reduced TF length in 2023 from 11ms to 2.8ms to reduce the memory footprint.

• Memory is more limited on GRID sites than on your online farm.

• A common software framework for multiple GPU types allows for changing the vendor and simplifies debugging.

• Default build should contain all GPU backends, to be enabled transparently and optionally (e.g. via plugins).

• Having the full reconstruction in a single monolithic process is failure-prone and difficult to debug (Run 3), too many 

individual processes can have huge memory demand → good compromise needed.

• No fallback for too slow online processing, and there are always unforeseen effects. 30% compute margin turned out 

reasonable.

• Our code might have “average complexity” as CPU application, but our GPU code is more complicated than ML / 

most HPC code and compilers might not be ready for it.
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Lessons learned

• GPUs can speed up the processing significantly.

• Not necessarily all workloads needs to run on GPU, but the hot spot.

• Inexperienced users can contribute improvements to algorithms, for implementing full new reconstruction steps on 

GPU more expert knowledge is needed.

• Scheduling for online and offline processing is different.

• Should also optimize for memory perhaps sacrificing a bit of performance.

• ALICE reduced TF length in 2023 from 11ms to 2.8ms to reduce the memory footprint.

• Memory is more limited on GRID sites than on your online farm.

• A common software framework for multiple GPU types allows for changing the vendor and simplifies debugging.

• Default build should contain all GPU backends, to be enabled transparently and optionally (e.g. via plugins).

• Having the full reconstruction in a single monolithic process is failure-prone and difficult to debug (Run 3), too many 

individual processes can have huge memory demand → good compromise needed.

• No fallback for too slow online processing, and there are always unforeseen effects. 30% compute margin turned out 

reasonable.

• Our code might have “average complexity” as CPU application, but our GPU code is more complicated than ML / 

most HPC code and compilers might not be ready for it.

• Meanwhile filed > 150 bug reports to AMD, ARM, Clang, NVIDIA, actually stopped counting at 100...

Bug repors:

https://github.com/RadeonOpenCompute/ROCm/issues/866

https://github.com/ROCmSoftwarePlatform/hipCUB/issues/50

https://github.com/RadeonOpenCompute/hcc/issues/1257

https://github.com/RadeonOpenCompute/hcc/issues/1274

https://github.com/davidrohr/AliceO2/issues/4

https://github.com/ROCm-Developer-Tools/HIP/pull/894

https://github.com/ROCm-Developer-Tools/HIP/pull/1302

https://github.com/ROCm-Developer-Tools/HIP/issues/892

https://github.com/ROCm-Developer-Tools/HIP/issues/893

https://github.com/ROCm-Developer-Tools/HIP/issues/1107

https://github.com/ROCm-Developer-Tools/HIP/issues/1126

https://github.com/ROCm-Developer-Tools/HIP/issues/1131

https://github.com/ROCm-Developer-Tools/HIP/issues/1141

https://github.com/ROCm-Developer-Tools/HIP/issues/1185

https://github.com/ROCm-Developer-Tools/HIP/issues/1314

https://github.com/ROCm-Developer-Tools/HIP/issues/1335

https://github.com/ROCm-Developer-Tools/HIP/issues/1401

https://github.com/ROCm-Developer-Tools/HIP/issues/1493

https://github.com/ROCm-Developer-Tools/HIP/issues/1532

https://github.com/ROCm-Developer-Tools/HIP/issues/1538

https://github.com/ROCm-Developer-Tools/HIP/issues/1556

https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/302

https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/303

https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/304

https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/357

https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/385

https://github.com/ROCmSoftwarePlatform/rocThrust/issues/61

https://github.com/KhronosGroup/OpenCL-Docs/issues/50

https://github.com/KhronosGroup/OpenCL-Docs/issues/66

https://bugs.llvm.org/show_bug.cgi?id=40603

https://bugs.llvm.org/show_bug.cgi?id=40707

https://bugs.llvm.org/show_bug.cgi?id=40778

https://bugs.llvm.org/show_bug.cgi?id=41070

https://bugs.llvm.org/show_bug.cgi?id=41567

https://bugs.llvm.org/show_bug.cgi?id=41609

https://bugs.llvm.org/show_bug.cgi?id=41963

https://bugs.llvm.org/show_bug.cgi?id=42031

https://bugs.llvm.org/show_bug.cgi?id=42033

https://bugs.llvm.org/show_bug.cgi?id=42060

https://bugs.llvm.org/show_bug.cgi?id=42385

https://bugs.llvm.org/show_bug.cgi?id=42387

https://bugs.llvm.org/show_bug.cgi?id=42390

https://bugs.llvm.org/show_bug.cgi?id=43057

https://bugs.llvm.org/show_bug.cgi?id=43145

https://bugs.llvm.org/show_bug.cgi?id=44176

https://bugs.llvm.org/show_bug.cgi?id=44177

https://reviews.llvm.org/D59603

https://reviews.llvm.org/D58708

https://reviews.llvm.org/D58719

https://reviews.llvm.org/D59646
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