

Realtime Anomaly Detection @ LI Trigger

Abhijith Gandrakota Fermilab

On behalf of CMS collaboration

ICHEP 2024 Prague, Czech Republic

- CMS produces more data than what we can handle
 - Two-level trigger to capture interesting physics
 - Need quick decisions w/ large data rate
 - LI runs on FPGAs (w/ 3.8µs latency & 110 kHz output rate)

Discard a lot of this

Retain much of this

(Needs to be unbiased)

- Objective of a trigger: Manageable rates, Enhance sensitivity to BSM / rare SM
 - Discard typical events, Retain only interesting (atypical) events
- Atypicality through kinematic selection
 - Low sensitivity, Model independent
- BSM / Rare SM model signature basis
 - Higher sensitivity, Model dependent

• Objective of a trigger: Manageable rates, Enhance sensitivity to BSM / rare SM

• Objective of a trigger: Manageable rates, Enhance sensitivity to BSM / rare SM

Why Anomaly detection ?

- Main objective of a trigger: Manageable rates, Sensitivity to BSM / rare SM
 - Discard typical events, Retain only interesting (atypical) events
- New Approach: Anomaly Detection
 - High sensitivity, model agnostic
 - With Machine Learning @ L1 trigger
 - Trained directly on data (ZeroBias)
 - Unbiased approach to capture new physics

Rate reduction

Abhijith Gandrakota

Why Anomaly detection ?

- Main objective of a trigger: Manageable rates, Sensitivity to BSM / rare SM
 - Discard typical events, Retain only interesting (atypical) events
- Simple New Approach: Anomaly Detection Model Independence Anomaly Kinematic cuts Detection • High sensitivity, model agnostic • With Machine Learning @ LI trigger • Trained directly on data (ZeroBias) Model Dependent Unbiased approach to capture new physics Triggers **Rate reduction** Two complementary approaches in CMS: *** AXOLITL and CIC*DA
 - Anomaly eXtraction Online Level- | Trigger aLgorithm
 - Calorimeter Image Convolutional Anomaly Detection Algorithm

7

Check out Andrew's talk

for all Novel Run-3 Triggers

Autoencoders

- Unsupervised ML algorithm to learn efficient encodings of backgrounds in data
 - Encodes inputs to latent space, from these decoder tries to recreate input data
 - Trained to have a minimal difference between the input and output
- For a typical event, the output will have a minimal error compared to input

Autoencoders

- Unsupervised ML algorithm to learn efficient encodings of backgrounds in data
 - Encodes inputs to latent space, from these decoder tries to recreate input data
 - Trained to have a minimal difference between the input and output
- For a typical event, the output will have a minimal error compared to input
 - For a *atypical* event, will result in high reconstruction error!

How do we train it ?

• Learning typicality : By training on Zero Bias dataset

How do we train it ?

‡ Fermilab

How do we train it ?

• Learning typicality : By training on Zero Bias dataset

AXOL ITL

- Uses variational autoencoder
 - In training require the latent space is gaussian distributed ~ $\mathcal{N}(0,1)$
 - For atypical events from $\sim \mathcal{N}(0,1)$
- Solution: Deploy only the encoder

Probabilistic

Encoder

Anomaly Metric = μ^2

nput

- Uses convolutional autoencoder
 - Most suited for image like inputs
- Knowledge distillation to compress the autoencoder to a smaller model size

Compressed model outputs the reconstruction error

Abhijith Gandrakota

, not

δ

Anomalous

μ

2023 (13.6 TeV)

AXOLITL

• Uses variational autoencoder

•

CMS Preliminary

Different anomaly thresholds for targeting different rates

AXOL ITL

- Uses variational autoencoder
 - Deploy only the encoder

- Preliminary physics performance
 - Evaluated on $H \rightarrow aa \rightarrow 4b \text{ MC}$

AXOLITL rate	l kHz	5 kHz
Signal Efficiency gain	46%	100%

• Large increase in signal efficiency for a small increase

‡Fermilab

AXOLITL

- Uses variational autoencoder
 - Deploy only the encoder

‡Fermilab

Uses variational autoencoder

•

Deploy only the e How do we deploy NN on FPGA?

Anomaly Metric

Abhijith Gandrakota

Does it even work in a

realistic setting ??

Algorithm development

‡ Fermilab

Technical implementation

Abhijith Gandrakota

AXOLITL @ LI Trigger

- Implementation of NNs @ LI FPGA
 - Powered by hls4ml
- On Xilinx Virtex-7 XCUP9P uGT boards
 - Needs ultra fast inference
 - Achieved inference time of 50 ns!
- **AXOL1TL** trigger is successfully integrated
- **AXOL1TL** is collecting data in CMS since last year !
 - Data collection started in 2024

	Latency	LUTs	FFs	DSPs	BRAMs
AXOLITL	2 ticks 50 ns	2.1%	~0	0	0

Triggering strategy

Fermilab

21

- Triggers currently in place for AXOLITL, will be shared with CICADA soon!
 - Collects high statistics samples of anomalous events in Run-3 !

Preliminary Insights

- Purity of the Trigger:
 - Many events triggered by AXOLITL are unique
 - Mostly orthogonal to the current LI Trigger menu

- Features of events selected:
 - Preference of events with high object multiplicity
 - Key in identifying certain BSM signatures (eg: SUEPs)

Abhijith Gandrakota

Preliminary Insights

- Preliminary analysis performed on fraction of the dataset
 - Distribution of search variables
 - Invariant mass distributions of the objects recorded with Data Scouting
 - No sculpting and nominal mass distributions: Ideal for BSM (/ SM) searches

Abhijith Gandrakota

How does anomalous event look like ?

CMS Experiment at the LHC, CERN Data recorded: 2023-May-24 01:42:17.826112 GMT Run / Event / LS: 367883 / 374187302 / 159

Summary

- Anomaly detection great at improving efficiency to all new physics, even at low rates
 - Cuts the rate down, but stays sensitive to BSM / Rare SM physics
 - Will significantly expand the reach of current LI Menu
- Two complimentary approaches ******AXOLITL and **CIC**A
 - Enabled by huge support from LI Trigger community!
 - **AXOLITL** is running on CMS Trigger and collecting data
- Demonstrated how to implement AD in a highly resource constrained environment
 - Rich insights for developing triggers for HL-LHC

CMS taking bold steps and entering a new triggering paradigm

Thank you !