

High-Throughput GNN-Based Track Reconstruction on GPUs at LHCb

International Conference on High Energy Physics 2024 Prague, Friday, July 19, 2024

Fotis I. Giasemis, Anthony Correia, Nabil Garroum, Vava Gligorov, Bertrand Granado On behalf of the LHCb Real-Time Analysis Project

arXiv.2407.12119

LHCb Trigger **Software trigger of LHCb**

- Software high level trigger: 2 levels
- <u>Allen</u>: level 1 of the LHCb trigger
- Filters **30 million** bunch crossings (events) per sec
- Entirely on GPUs
- Track reconstruction
- Topological triggering on events

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

[LHCB-FIGURE-2020-016]

Fotis Giasemis | LIP6/LPNHE

- Momentum resolution: $\Delta p/p \sim 0.5-1\%$
- B-meson decay time resolution: ~45 fs
- Impact parameter resolution: (15 +29/pT[GeV]) µm

19/07/2024 | ICHEP | Prague

[LHCB-DP-2022-002]

Fotis Giasemis | LIP6/LPNHE

- Momentum resolution: $\Delta p/p \sim 0.5-1\%$ •
- B-meson decay time resolution: ~45 fs
- Impact parameter resolution: (15 +29/pT[GeV]) µm

19/07/2024 | ICHEP | Prague

[LHCB-DP-2022-002]

Fotis Giasemis | LIP6/LPNHE

- Momentum resolution: $\Delta p/p \sim 0.5-1\%$
- B-meson decay time resolution: ~45 fs
- Impact parameter resolution: (15 +29/pT[GeV]) µm

19/07/2024 | ICHEP | Prague

[LHCB-DP-2022-002]

Fotis Giasemis | LIP6/LPNHE

- Momentum resolution: $\Delta p/p \sim 0.5-1\%$ •
- B-meson decay time resolution: ~45 fs
- Impact parameter resolution: (15 +29/pT[GeV]) µm

19/07/2024 | ICHEP | Prague

[LHCB-DP-2022-002]

Track Finding Finding tracks from the hits in the detector

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

"track reconstruction", "tracking"

No magnetic field

Tracking in the VELO with ETX4VELO

- Question: Will ML allow a more **efficient** use of computing resources?
- Expected increase in luminosity, next generation of detectors
- Inference time close to linear on # hits [DOI:10.1140/epic/s10052-021-09675-8]
- VS classical worse than quadratic [DOI:10.48550/arXiv.2012.01563]

Starting point: <u>Exa.TrkX collaboration</u>, <u>talk@CHEP2021</u>, <u>PyTorch</u>

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

ETX4VELO **Tracking in the VELO with ETX4VELO**

- Graph Neural Network-based pipeline for track finding in the VELO
- <u>ETX4VELO</u>, <u>arXiv.2406.12869</u>

- Comparable or superior physics performance to Allen
- Excellent electron reconstruction achieved using triplets
- Significantly reduced fake rate

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

ETX4VELO How do we get a graph from the hits?

Hits in the detector

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

How do we get a graph from the hits?

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

Fotis Giasemis | LIP6/LPNHE

Graph

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

Fotis Giasemis | LIP6/LPNHE

Fotis Giasemis | LIP6/LPNHE

ETX4VELO Physics performance

	ALLEN	ETX4VELO
Fake rate	2.17 %	1.04 %

For particles leaving long tracks

Fotis Giasemis | LIP6/LPNHE

For particles leaving long tracks, no electrons

19/07/2024 | ICHEP | Prague

ETX4VELO Main Objectives

Neural network for tracking with state-of-the-art physics performance

High computational performance (throughput)

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

ETX4VELO Main Objectives

Neural network for tracking with state-of-the-art physics performance

High computational performance (throughput)

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

ETX4VELO inside LHCb framework (Allen)

GNN

Graph

19/07/2024 | ICHEP | Prague

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

ML Inference on GPU (Allen)

- Throughput: infer events in batches
- Maximum number allowed by GPU memory

- ONNX Runtime + CUDA Execution Provider
- **TensorRT**

Fotis Giasemis | LIP6/LPNHE

Computational performance

NVIDIA GeForce RTX 3090

Conclusion

Track finding with ETX4VELO

Superior physics performance to state of the art reachable

GPU version of ETX4VELO

End-to-end implementation in LHCb (Allen)

Next steps

- Quantization of the **GNN**
- Further optimization of the pipeline

This work is part of the SMARTHEP network and it is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086, and in collaboration with Ivan Kisel and FIAS under the ANN4Europe project.

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

arXiv.2407.1211

Thank you!

I would also like to thank the LHCb RTA reviewers, Núria Valls Canudas, Simon Akar, and Da Yu Tou, for their constructive comments

Graph Neural Networks How?

- GNN architecture:
 - Node features
 - Aggregation
 - Neural message passing

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

(a) Input graph (b) Neighborhood aggregation

[DOI:10.1109/TVCG.2022.3148107]

How do we get a graph from the hits?

Fotis Giasemis | LIP6/LPNHE

19/07/2024 | ICHEP | Prague

The LHCb Detector Tracks in LHCb

Z

ETX4VELO Physics performance

Proportion of

Reconstructed particles

Duplicate tracks

Fake tracks

Fotis Giasemis | LIP6/LPNHE

ALLEN	ETX4VELO
99.06 %	99.23 %
2.63 %	1.37 %
2.17 %	1.04 %

For particles leaving long tracks

Problem with electrons: shared hits

- Problem with electrons:
 - Material interactions —> positron-electron
 - ~ 55% electrons/positrons share hits with
 - Then split up
 - Electrons with "long tracks" = "long elect
 - Important for the LHCb physics program
- Solution: use edge-edge connections (triplet

Fotis Giasemis | LIP6/LPNHE

n nairs					
ii pans	TrackChecker output		:	38049/	1117828
	01_velo		:	491643/	520515
	02_long		:	286719/	296345
n ang anathar	03_long_P>5GeV		:	185866/	189727
	04_long_strange		:	13654/	15243
	05_long_strange_P>5GeV		:	6606/	7229
	06_long_fromB		:	497/	513
	07_long_fromB_P>5GeV		:	335/	343
	08_long_electrons		:	16634/	21330
	09_long_fromB_electrons	5 50 V	:	41/	58
	10_long_fromB_electrons_	_P>5GeV	:	30/	38
trons"	*** Benchmark score: 94	4.01			
	Categories	Efficiency	Average effic:	iency	% clones
	Velo Long Velo, no electrons Velo, only electrons Long, only electrons	90.37% 95.49% 94.45% 69.30% 77.98%	91.08% 95.97% 95.11% 69.84% 78.93%	. 	1.41% 0.97% 0.89% 4.91% 3.54%
ts)	Categories # ghost : : Everything 38,049	ts # tracks :	% ghosts : 8 3.40%	 - 	LHCb

Problem with electrons: shared hits

Fotis Giasemis | LIP6/LPNHE

Problem with electrons: the solution

- Problem with electrons:
 - Pipeline cannot separate particle with shared edges
 - Hit-hit connections are not enough
 - Solution:
 - Use edge-edge connections (triplets)
 - Use GNN again on triplets

19/07/2024 | ICHEP | Prague

ETX4VELO Computational performance

Pipeline	Up to step	Throughput (events/s)		
		ONNX Runtime FP32	TensorRT FP32	TensorRT INT8
VELO decoding		1,400k		
	Embedding	54k	330k	820k
ETX4VELO	k-NN	38k	81k	93k
	GNN	0.46k	1.4k	
	VELO tracks	0.45k	1.3k	
ALLEN	VELO tracks		860k	

Fotis Giasemis | LIP6/LPNHE

NVIDIA GeForce RTX 3090, 500 events, 50 repetitions

ETX4VELO GPU Version Implementation details

- Global nearest neighbour search vs using only adjacent planes
- Unidirectional vs bidirectional graph
- General connected components algorithm vs geometry-specific
- TensorRT plugin for GNN operation
- Custom memory allocator for the inference engine

19/07/2024 | ICHEP | Prague

ETX4VELO GPU Version ONNX Runtime vs TensorRT implementation

ONNX Runtime

Better out-of-the-box support

CPU backend

Fotis Giasemis | LIP6/LPNHE

TensorRT
Better documentation
Lower memory footprint
Higher throughput
Memory managers reconciled more easily

