
Fast ML inference framework for 
real-time analysis at LHCb

Maarten van Veghel on behalf of the LHCb RTA project

1



High throughput demands of LHCb Run 3
● LHCb studies mainly decays of beauty and charm hadrons with high signal rates

2

● DAQ running at 40 MHz to cope with high signal rate
○ Reconstruction and selection with as many features as possible, as early as possible

● Extract information from tracking sub-detectors and subsequently reconstruct and select
○ Make use of Machine Learning (inference) at earliest level as much as possible

LHCb-PROC-2022-010

https://cds.cern.ch/record/2823780/


3

LHCB-FIGURE-2020-016Data flow of the current detector
Event-model flexibility!

Direct software-based trigger!

Full offline-quality reconstruction!

https://cds.cern.ch/record/2730181?ln=en


First level trigger at LHCb HLT1
● About 400 GPUs reduce the rate of incoming data 

from 5 TB/s to approximately 100 GB/s
○ About order 100 kernels running, 

with the Allen software project
○ Ballpark: with 500 GPUs, minimum requirement 

is 60 kHz per GPU for 30 MHz non-empty bunch crossings
● Reconstruction

○ Charged particles in tracking detectors
■ clustering, tracking, vertexing

● Track fit and secondary vertex reconstruction 
○ Muon stations / calorimeter reconstruction

■ Muon and Electron PID
● Including neural nets

■ Neutrals reconstruction
● Selection

○ focused on displaced charged tracks
■ Including neural nets for two-track combinations 4

Comput Softw Big Sci 4, 7 (2020)

https://arxiv.org/abs/1912.09161
https://link.springer.com/article/10.1007/s41781-020-00039-7


5

● Full, offline-quality (after alignment and calibration) reconstruction with full-quality track fit to 
achieve high momentum resolution, calibrated PID and vertexing on CPUs
○ with improvements in muon ID, electron ID and bremsstrahlung reconstruction

● Order of 1000 selections
○ including dedicated reconstructions, selective information persistency, …

● Ballpark: about 200 Hz throughput needed assuming about 5000 servers with 1 MHz input

Second and final level trigger HLT2



Applications of ML in online environment of LHCb
● Classification of reconstructed objects (at all levels)

○ Reconstruction
■ Charged tracks

● Real vs fake (ghost rejection)
■ Type of charged tracks

● pion / muon / electron / …
○ Selection level

■ Higher level objects
● combination of tracks coming 

from heavy flavour decays
■ Typically trained / used for selecting 

specific signals with trigger lines
○ Typical feature counts of 10-20

● Other tasks like pattern recognition and 
anomaly detection are possible and studied

6

LHCb-PUB-2017-011

Ghost rejection MLP from previous LHCb Run 2

https://cds.cern.ch/record/2255039?ln=en


ML infrastructure in online environment of LHCb
● Online environment needs

○ Most of all high speed!
○ Fast turn around time of training and deployment, …
○ Common tools / standardization

■ avoid customization / hard coded 
solutions as much as possible

■ improve maintainability and ease of use
○ Production level code needs a lot of testing

■ Run ML pipelines in CI/CD (Gitlab/Jenkins)
● Also for fast turnaround time!

● Most needed in HLT2 (CPU)
○ Most applications, most interactions with ‘users’
○ First focus on fastest algorithms, also have simplest models!

● But in the future more emphasize on general libraries and GPUs, developments ongoing
○ More challenging setup with demands on GPU/CPU compatible libraries and speed

7



8

● Significant speed improvements have been achieved using
○ Multithreading / vectorization also in 

this CPU-based software
○ Structure-of-Arrays

■ Reduce memory usage
○ Parallelization with SIMD 

■ Single Instruction/Multiple Data
JINST 15 (2020) 06, P06018

○ Smarter, more selective algorithms
■ Pre-select on input of 

time-intensive algorithms
○ Mainly used in reconstruction sequences

■ See reconstruction throughput 
breakdown on the right before speed ups

● Developed new ML inference infrastructure to fully make use of that

HLT2 (CPU) throughput

https://arxiv.org/abs/1912.09901


Fast inference in HLT2 (CPU)
● Fast inference of relatively simple models (MLPs)

○ Shapes of models fully set at compile time
○ Custom implementation within Gaudi framework

■ Allows full control (of speed ups)
■ Typical MLP layers supported
■ Integration with (SIMD) event model

○ Evaluation using SIMD
■ Automatic batching when running 

over ranges like std::vector with non-SIMD event model
○ Weights loaded during configuration from database

■ Allows flexibility with retraining and deployment
● Training infrastructure

○ API with PyTorch
■ Regression test to ensure similarity
■ Easily extendable to other training software

○ Example of training runs in CI / Jenkins
9



Testing, pipelines and experience in production
● General aims achieved for HLT2 (CPU) infrastructure

○ Speeding up main classifiers (roughly 10% of reco timing) ✅
■ factor 2 - 3

○ Separate / fully optimized inference from training ✅
○ Maintained training pipeline ✅

● Running in production since start 2024 for HLT2 (CPU) infrastructure
○ Already used for fast retraining due to online needs

■ Retraining within a day, 
cross-checked / released / deployed within a few days

○ Multiple developers picked it up and are expanding it
■ Feedback so far is that it’s easy to use and expand

● General aims achieved
○ Fast turnaround time ✅
○ Ease of use ✅

10



General libraries for ML inference in HLT1 (GPU)
● Flexibility, maintainability

○ Hard/hand-coded ML inference is not flexible / not great to maintain
○ Platform to load standardized ML-model data format: ONNX

■ Supported by many (if not most) training software
■ At CPU (HLT2) level being integrated with ONNXRuntime

● Providing these features with inference on GPU
○ LHCb uses NVIDIA RTX A5000
○ TensorRT [link] from NVIDIA provides

■ Fast-inference platform / SDK
■ ONNX files can be read by it
■ Optimization possible within 

package, like quantization

11

https://developer.nvidia.com/tensorrt


Throughput impact of TensorRT inference
● The baseline model tested 

with respect to TensorRT batch size
○ Kernel overhead is main bottleneck

■ These MLPs are small
● At high batch size it seems getting

feasible to run a few copies of such neural nets!

12



Conclusions and outlook
● LHCb has high demands of throughput of reconstruction 

and selection on both CPUs and GPUs to cope with high signal rates
○ Machine learning ideal to reduce rates 

while keeping signal efficiencies high

● ML infrastructure for online use
○ General aims

■ Fast inference
■ Separate inference from training, using common tools for training like PyTorch
■ Maintained training pipeline

○ Generally achieved for simple, but most demanding models for CPU (HLT2) part ✅ 
○ Ongoing developments for GPU as well

● More is needed though
○ Better infrastructure with general inference libraries (ONNXRuntime, …) in selections

■ Selections are typically less demanding in terms of speed ups
○ Testing infrastructure is not really scalable, needs a dedicate solution 13


