
Automatic Differentiation in RooFit for fast and accurate likelihood fits

ICHEP 2024, Prague, July 20th

Automatic Differentiation in RooFit
for fast and accurate likelihood fits

Jonas Rembser 1 David Lange 2+ Petro Zarytsky 2+ Lorenzo Moneta 1

 Vaibhav Thakkar 2+ Vassil Vassilev 2+

1 - CERN 2+ - Princeton University (US) and supported by the National Science Foundation under Grant OAC-2311471.

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Introduction
Re-engineering RooFit with Automatic Differentiation for faster likelihood fits.

What happened before:
● Work on AD in RooFit stated two years ago
● Presentation at ACAT 2022 with first proof of concept outside ROOT
● Presentation at CHEP 2023 with benchmarks of our approach integrated in ROOT

Today:

Update on recent improvements in RooFit AD, cumulating in the support of CMS and ATLAS
Higgs combination models.

2

https://indico.cern.ch/event/1106990/contributions/5096952/
https://indico.jlab.org/event/459/contributions/11581/

Automatic Differentiation in RooFit for fast and accurate likelihood fits

RooFit
RooFit: C++ library for statistical data analysis in ROOT.

● Used for modelling and normalization of probability
density functions (p.d.f)

● Fitting likelihood models to the event data set.
○ Minimizing both binned and unbinned

likelihoods

● Used most prominently by the LHC experiments,
also for discovering the Higgs boson in 2012

○ Example of profile likelihood scan on the right

3

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Numeric minimization of RooFit Likelihoods
- By default, RooFit uses numerical differentiation: Minuit 2 changes parameters

on-at-a-time to get the full gradient

- One key concept of RooFit: caching of intermediate results to minimize

redundant computations in gradient evaluation

- Still, gradient dominates minimization time (see also the ICHEP 2022 RooFit presentation)

- Our goal: make evaluating gradients cheap with Automatic differentiation (AD)

4

https://agenda.infn.it/event/28874/contributions/169205

Automatic Differentiation in RooFit for fast and accurate likelihood fits

An automatic differentiation engine for RooFit
● RooFit is a framework to build computation graphs for function minimization, similar to the ML

frameworks TensorFlow or PyTorch

● Different from other frameworks, RooFit didn’t have an automatic differentiation engine

● However, the other frameworks are generally not optimized for HEP usecases and workflows

Therefore, we have added a differentiation engine based on Clad and C++ code generation to RooFit:

so you can get analytic likelihood gradients without compromising.

5

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Brief Introduction to Automatic Differentiation (AD)

Reference: V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x, int N=5) {
 double result = x;
 for (unsigned i = 0; i < N; i++)
 result = std::exp(result);
 return result;
}

AD

double f_dx(double x, int N=5) {
 double result = x;
 double d_result = 1;
 for (unsigned i = 0; i < N; i++) {
 result = std::exp(result);
 d_result *= result;
 }
 return d_result;
}

Figure out the analytical fn

Symbolic via Wolfram Alpha

Handcode

6

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Reverse mode AD: evaluating the chain rule top-down

y = f(x0, x1)
z = g(y)

w0, w1 = l(z)

zy

w0

w1

x0

x1

One can get the gradient of one output wrt. all inputs in two passes

through the computation graph:

● Forward pass: evaluate computation graph and cache

intermediate results (aka. “store them on tape”)

● Reverse pass: evaluate and accumulate the partial derivatives

Most prominent application: backpropagation in deep learning.

Why it’s great: runtime scales with the size of the computation, not the
number of parameters.

7

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Clad
● Source transformation based AD tool for C++

○ Runs at compile time - clad generates readable (and debuggable) code for derivatives.

○ Optimization capabilities of the Clang/LLVM Infrastructure enabled by default.

● Support for control flow expression - difficult with operator overloading approaches.
○ Better handling of complex control flow logic handling compared to machine-learning

frameworks like Tensorflow and Pytorch, hence more suitable for scientific computing.

● Integrated with ROOT infrastructure.
○ Clad’s compiler research team has integration in High Energy Physics (HEP), and making

significant improvements for RooFit use case.

https://github.com/vgvassilev/clad/

8

https://github.com/vgvassilev/clad/

Automatic Differentiation in RooFit for fast and accurate likelihood fits

How RooFit uses Clad to get analytic gradients:
Code generation (aka. “codegen”)

1. Mathematical concept
2. RooFit user code
3. Automatic translation of RooFit model to simple C++ code
4. Gradient of C++ code automatically generated with Clad
5. Gradient code wrapped back into RooFit object

9

Note: for the nominal NLL function, we still use
RooFits CPU backend to benefit from
vectorization and caching outside the gradients.

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Status of RooFit “codegen” backend
● You can enable it in your fit or likelihood creation with one additional argument:

● pdf.fitTo(data, RooFit::EvalBackend(“codegen”))
● pdf.createNLL(data, RooFit::EvalBackend(“codegen”))

● Many RooFit classes already support it, most notably all of HistFactory and also complicated
ones like numeric integrals

● RooFit has many classes with varying importance: we need your feedback on which RooFit
primitives should be supported

● Adding codegen support for custom classes is not difficult (see CMS combine example later)

10

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Experiments with ATLAS Benchmark models

Instructions to reproduce in backup

● ATLAS HistFactory model (49 HistFactory
channels, 739 parameter in total, in rootbench).

How to read this plot:

● Seeding time: initial Hessian estimate
(num. second derivatives)

● Minimization time: finding the minimum
● JIT time: time to generate and compile the gradient code

○ The gradient can be be reused across different
minimizations, amortizing the JIT time

○ For example, possible reuse in profile likelihood scans

Using AD drastically reduces minimization time on top of the
new CPU backend in ROOT 6.32.

Bottom line: 10x faster minimization compared to ROOT 6.30.

Can be amortized by
reusing the NLL

11

https://github.com/root-project/rootbench
https://indico.jlab.org/event/459/contributions/11570/

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Experiments with ATLAS Benchmark models

● Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.

○ Constant factor of the consumption by primal function.

12

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Benchmarks with the CMS Higgs Observation Model
● Breaking news in April 2024: CMS published

RooFit-based Higgs observation likelihood!

● Very heterogeneous likelihood: 672 parameters in

102 channels with

○ Template histogram fits

○ Analytical shape fits, numerical integration

necessary in some cases

● Perfect example to test the new RooFit developments

See also the presentation on CMS analysis tools at this

conference.
Screenshot from the README of the open likelihood:
You can re-discover the Higgs.

13

https://repository.cern/records/c2948-e8875
https://indico.cern.ch/event/1291157/contributions/5889475/

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Benchmarks with the CMS Higgs Observation Model
● We implemented necessary free functions for the

generated code in a custom CMS combine branch
● Benchmarked one minimization pass

Observations:

● The new CPU code path default in ROOT 6.32 is a big
improvement to the old RooFit, possibly making many
custom improvements in combine obsolete

● The AD backend further reduces minimization time
● Printing out the generated NLL code helps a lot to

understand what’s actually fitted

Instructions to reproduce in backup

Can be amortized by
reusing the NLL

14

https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/compare/main...guitargeek:HiggsAnalysis-CombinedLimit:roofit_ad_ichep_2024?expand=1#diff-8bc8160707ee6d1e8eb19585990c94fc0e29492c9a17e88e3a6115e18ca53098

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Benchmarks with the CMS Higgs Observation Model
One more observation on numerical stability:

● For these kinds of fits, the derivatives are small compared to the NLL value
● Numerical differentiation often fails because the finite differences are smaller than numerical

precision on the NLL
● Solution so far - offsetting the NLL but initial value:

pdf.createNLL(data, RooFit::Offset(true))

Problems with this:

● Offsetting might fail if initial value is far from the minimum
● Bookkeeping of offsets is error-prone

With AD, the offsetting is not necessary anymore!

36 - FCN = -9801946.549 Edm = 0.01129396511

37 - FCN = -9801946.566 Edm = 0.01497173883

38 - FCN = -9801946.574 Edm = 0.007242353199

39 - FCN = -9801946.583 Edm = 0.004954953322

40 - FCN = -9801946.589 Edm = 0.005774308843

41 - FCN = -9801946.596 Edm = 0.004695329674

42 - FCN = -9801946.602 Edm = 0.004558156748

43 - FCN = -9801946.615 Edm = 0.008141300763

44 - FCN = -9801946.625 Edm = 0.004861879849

45 - FCN = -9801946.628 Edm = 0.003472778648

46 - FCN = -9801946.63 Edm = 0.001782083931

47 - FCN = -9801946.631 Edm = 0.0007515760698

Minimizer output, showing the small
changes wrt. large NLL value

15

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Possible next steps and perspectives
● Enabling analytic gradients by default if possible

● Work together with experiments to support your usecases and help out in integration RooFit
AD in experiment frameworks

● Improve support for non-trivial functions, like numeric integrals

● Extend RooFits interfaces so it will be easy to get out the generated code and gradients to use
them outside the RooFit minimization routines

● R & D on analytic higher-order derivatives that are used in Minuit

Your input and support is highly welcome!

16

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Conclusions
Source-code transformation AD with Clad fits naturally into the ROOT ecosystem and

RooFit benefits from it in many ways:

● Faster likelihood gradients
● No need for tricks to get numerically stable gradients

● Likelihoods can be expressed in plain C++ without need for aggressive caching by

the user or in frameworks like RooFit
○ Good for understanding the math: optimization gets decoupled from logic - simple code

○ Good for collaboration: simple C++ can easily be shared and used in other contexts

17

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Backup

18

Automatic Differentiation in RooFit for fast and accurate likelihood fits

About Clad - usage example in ROOT interpreter
// example.C

#include <Math/CladDerivator.h>

double f (double x, double y) {

 return x*y; // <— Function to be differentiated

}

void example() {

 // Call clad to generate the derivative of f wrt x.

 auto f_dx = clad::differentiate(f, "x");

 // Execute the generated derivative function.

 std::cout << f_dx.execute(/*x=*/3, /*y=*/4) << std::endl;

 std::cout << f_dx.execute(/*x=*/9, /*y=*/6) << std::endl;

 // Dump the generated derivative code to stdout.

 f_dx.dump();

}

4 // df/dx for (x,y) = (3, 4)
6 // df/dx for (x,y) = (9, 6)

double f_darg0 (double x, double y)
{
 double _d_x = 1;
 double _d_y = 0;
 return _d_x * y + x * _d_y;
}

root example.C

ROOT/Cling

Produces

19

Automatic Differentiation in RooFit for fast and accurate likelihood fits

About Clad - usage example standalone
// Source.cpp
#include "clad/Differentiator/Differentiator.h"
#include <iostream>

double f (double x, double y) {
 return x*y; // <— Function to be differentiated
}

double main() {
 // Call clad to generate the derivative of f wrt x.
 auto f_dx = clad::differentiate(f, "x");

 // Execute the generated derivative function.
 std::cout << f_dx.execute(/*x=*/3, /*y=*/4) << std::endl;
 std::cout << f_dx.execute(/*x=*/9, /*y=*/6) << std::endl;

 // Dump the generated derivative code to stdout.
 f_dx.dump();
}

4 // df/dx for (x,y) = (3, 4)
6 // df/dx for (x,y) = (9, 6)

double f_darg0 (double x, double y)
{
 double _d_x = 1;
 double _d_y = 0;
 return _d_x * y + x * _d_y;
}

clang++ -I clad/include/ -fplugin=clad.so Source.cpp

Compilation (+ execution)

Produces

20

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Providing custom derivatives to Clad
double my_pow (double x, double y) {
 // … custom code here for computing xy …
}

namespace clad {
namespace custom_derivatives {
// Providing custom code for derivative computation of my_pow.
double my_pow_darg0(double x, double y) {return y * my_pow(x, y - 1);} // ∂f/∂x.
double my_pow_darg1(double x, double y) {return my_pow(x, y) * std::log(x);} // ∂f/∂y.
}}

● Some use cases:
○ Calling a library function whose definition is not available.

○ Efficiency reasons - you have a better way.

○ Implicit function to be differentiated - for ex. requires solving some maximization problem

21

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Some recent changes in Clad enabled these results
● Handling constant pointers for reverse mode AD : #919

● Reducing tape storage operations inside Clad for reverse mode AD : #655

● Dynamic capturing of differentiation plans - capturing and traversing call graph : #766, #873

● To Be Recorded (TBR) analysis in reverse mode:

Reverse-mode AD requires storing intermediate values that have impact on derivatives to restore

values in the backward pass. However, we don’t actually have to store all of them:

Thanks a lot to the Clad team for these improvements!

22

https://github.com/vgvassilev/clad/pull/919
https://github.com/vgvassilev/clad/pull/655
https://github.com/vgvassilev/clad/pull/766
https://github.com/vgvassilev/clad/pull/873

Automatic Differentiation in RooFit for fast and accurate likelihood fits

To Be Recorded (TBR) analysis in reverse mode:
example

double f_exp(double x, size_t N) {
 for (int i=0; i < N; ++i)
 x = 2 * x;
 return x;
}

void f_exp_grad(...) {
 // forward pass
 …
 _t0 = 0;
 for (i = 0; i < N; ++i) {
 _t0++;
 x = 2 * x;
 }
 …
 // reverse pass
 for (; _t0; _t0--) {
 …
 }
}

void f_exp_grad(...) {
 // forward pass
 …
 clad::tape<double> _t1 = {}; // used to store x
 _t0 = 0;
 for (i = 0; i < N; ++i) {
 _t0++;
 clad::push(_t1, x); // x is only transformed linearly so it’s
 x = 2 * x; // value is not needed in the reverse pass
 }
 …
 // reverse pass
 for (; _t0; _t0--) {
 --i; // i is never used to compute the derivatives
 x = clad::pop(_t1); // no need to restore x
 …
 }
}

Original function

TBR analysis off TBR analysis on

In RooFit, more than 30%

code size reduction.

3x speedup in jit time.

23

Automatic Differentiation in RooFit for fast and accurate likelihood fits

RooFit code generation: Gaussian example

Gauss(x, mu + shift, sigma * scale)

RooRealVar x("x", "", 0, -10, 10);
RooRealVar mu("mu", "", 0, -10, 10);
RooRealVar shift("shift", "", 1.0, -10, 10);
RooAddition muShifted("mu_shifted", "", {mu, shift});
RooRealVar sigma("sigma", "", 2.0, 0.01, 10);
RooConstVar scale("scale", "", 1.5);
RooProduct sigmaScaled("sigma_scaled", "", sigma, scale);
RooGaussian gauss{"gauss", "", x, muShifted, sigmaScaled};

double gauss(double *x)
{
 using namespace RooFit::Detail;

 return EvaluateFuncs::gaussEvaluate(x[3], (x[0] + x[1]), (x[2] * 1.5)) /
 AnalyticalIntegrals::gaussianIntegral(-10., 10., (x[0] + x[1]), (x[2] *
1.5));
}

void gauss_grad(double *x, double *out);

1. Mathematical concept
2. RooFit user code
3. Automatic translation of RooFit model to simple C++ code
4. Gradient of C++ code automatically generated with Clad
5. Gradient code wrapped back into RooFit object

24

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Planned improvements to further speedup RooFit
On the Clad side:

● Using Automatic Differentiation for computing Hessians
○ Computing only the diagonal entries of Hessians for the seeding step.

● Further improvements in Clad to remove redundant computations for Gradients.
○ Advanced analysis for improving the efficiency of Gradient computations.

● Experimenting with make the gradient computation parallelizable.
○ Trying vector forward mode for Hessians.

On the ROOT side:

● More efficient Hessian evaluations: minimization is fast now, evaluating the Hessian of the NLL for
parameter estimation became the new bottleneck

25

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Reproducing the benchmark fits: ATLAS likelihood
● ATLAS HistFactory model (49 HistFactory channels, 739 parameter in total).
● It is part of rootbench and can be built with a special configuration flag.
● You need at least ROOT 6.32.04 (recipe below uses ROOT master on lxplus).

source LCG environment with ROOT nightlies
source /cvmfs/sft.cern.ch/lcg/views/dev3/latest/x86_64-el9-gcc13-opt/setup.sh

git clone git@github.com:root-project/rootbench.git
cd rootbench
mkdir build
cd build
cmake -DROOFIT_ATLAS_BENCHMARKS=ON ..
make -j8
cd root/roofit/atlas-benchmarks/
./download_workspaces.sh
./roofitAtlasHiggsBenchmark

26

https://github.com/root-project/rootbench

Automatic Differentiation in RooFit for fast and accurate likelihood fits

Reproducing the benchmark fits: CMS likelihood
● CMS Higgs discovery model (102 channels, 672 floating parameter in total).
● Requires custom “CMS combine” branch.
● You need at least ROOT 6.32.04 (recipe below uses ROOT master on lxplus).

source LCG environment with ROOT nightlies
source /cvmfs/sft.cern.ch/lcg/views/dev3/latest/x86_64-el9-gcc13-opt/setup.sh

git clone https://github.com/guitargeek/HiggsAnalysis-CombinedLimit.git HiggsAnalysis/CombinedLimit
cd HiggsAnalysis/CombinedLimit
git checkout roofit_ad_ichep_2024
mkdir build install
cd build
cmake -DCMAKE_INSTALL_PREFIX=../install ..
make install -j8
cd ..
chmod +x install/bin/*
wget "https://repository.cern/records/c2948-e8875/files/cms-h-observation-public-v1.0.tar.gz"
tar -xf cms-h-observation-public-v1.0.tar.gz
source env_standalone.sh
text2workspace.py cms-h-observation-public-v1.0/125.5/comb.txt --mass 125.5
python scripts/fitRooFitAD.py

27

https://repository.cern/records/c2948-e8875
https://github.com/guitargeek/HiggsAnalysis-CombinedLimit/tree/roofit_ad_ichep_2024

