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Automatic Differentiation in RooFit for fast and accurate likelihood fits

Introduction
Re-engineering RooFit with Automatic Differentiation for faster likelihood fits.

What happened before:
● Work on AD in RooFit stated two years ago
● Presentation at ACAT 2022 with first proof of concept outside ROOT
● Presentation at CHEP 2023 with benchmarks of our approach integrated in ROOT

Today:

Update on recent improvements in RooFit AD, cumulating in the support of CMS and ATLAS 
Higgs combination models.
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https://indico.cern.ch/event/1106990/contributions/5096952/
https://indico.jlab.org/event/459/contributions/11581/
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RooFit
RooFit: C++ library for statistical data analysis in ROOT.

● Used for modelling and normalization of probability 
density functions (p.d.f)

● Fitting likelihood models to the event data set.
○ Minimizing both binned and unbinned 

likelihoods

● Used most prominently by the LHC experiments, 
also for discovering the Higgs boson in 2012

○ Example of profile likelihood scan on the right

3



Automatic Differentiation in RooFit for fast and accurate likelihood fits

Numeric minimization of RooFit Likelihoods
- By default, RooFit uses numerical differentiation: Minuit 2 changes parameters 

on-at-a-time to get the full gradient

- One key concept of RooFit: caching of intermediate results to minimize 

redundant computations in gradient evaluation

- Still, gradient dominates minimization time (see also the ICHEP 2022 RooFit presentation)

- Our goal: make evaluating gradients cheap with Automatic differentiation (AD)
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https://agenda.infn.it/event/28874/contributions/169205
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An automatic differentiation engine for RooFit
● RooFit is a framework to build computation graphs for function minimization, similar to the ML 

frameworks TensorFlow or PyTorch

● Different from other frameworks, RooFit didn’t have an automatic differentiation engine

● However, the other frameworks are generally not optimized for HEP usecases and workflows

Therefore, we have added a differentiation engine based on Clad and C++ code generation to RooFit:

so you can get analytic likelihood gradients without compromising.
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Brief Introduction to Automatic Differentiation (AD)

Reference:    V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x, int N=5) {
  double result = x;
  for (unsigned i = 0; i < N; i++)
    result = std::exp(result);
  return result;
}

AD

double f_dx(double x, int N=5) {
  double result = x;
  double d_result = 1;
  for (unsigned i = 0; i < N; i++) {
     result = std::exp(result);
     d_result *= result;
  }
  return d_result;
}

  

Figure out the analytical fn

Symbolic via Wolfram Alpha

Handcode
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Reverse mode AD: evaluating the chain rule top-down

y = f(x0, x1)
z = g(y)

w0, w1 = l(z)

zy

w0

w1

x0

x1

 

One can get the gradient of one output wrt. all inputs in two passes 

through the computation graph:

● Forward pass: evaluate computation graph and cache 

intermediate results (aka. “store them on tape”)

● Reverse pass: evaluate and accumulate the partial derivatives

Most prominent application: backpropagation in deep learning.

Why it’s great: runtime scales with the size of the computation, not the 
number of parameters.
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Clad
● Source transformation based AD tool for C++

○ Runs at compile time - clad generates readable (and debuggable) code for derivatives.

○ Optimization capabilities of the Clang/LLVM Infrastructure enabled by default.

● Support for control flow expression - difficult with operator overloading approaches.
○ Better handling of complex control flow logic handling compared to machine-learning 

frameworks like Tensorflow and Pytorch, hence more suitable for scientific computing.

● Integrated with ROOT infrastructure.
○ Clad’s compiler research team has integration in High Energy Physics (HEP), and making 

significant improvements for RooFit use case.

https://github.com/vgvassilev/clad/
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https://github.com/vgvassilev/clad/
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How RooFit uses Clad to get analytic gradients:
Code generation (aka. “codegen”)

1. Mathematical concept
2. RooFit user code
3. Automatic translation of RooFit model to simple C++ code
4. Gradient of C++ code automatically generated with Clad
5. Gradient code wrapped back into RooFit object
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Note: for the nominal NLL function, we still use 
RooFits CPU backend to benefit from 
vectorization and caching outside the gradients.
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Status of RooFit “codegen” backend
● You can enable it in your fit or likelihood creation with one additional argument:

● pdf.fitTo(data, RooFit::EvalBackend(“codegen”))
● pdf.createNLL(data, RooFit::EvalBackend(“codegen”))

● Many RooFit classes already support it, most notably all of HistFactory and also complicated 
ones like numeric integrals

● RooFit has many classes with varying importance: we need your feedback on which RooFit 
primitives should be supported

● Adding codegen support for custom classes is not difficult (see CMS combine example later)
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Experiments with ATLAS Benchmark models

Instructions to reproduce in backup

● ATLAS HistFactory model (49 HistFactory 
channels, 739 parameter in total, in rootbench).

How to read this plot:

● Seeding time: initial Hessian estimate
(num. second derivatives)

● Minimization time: finding the minimum
● JIT time: time to generate and compile the gradient code

○ The gradient can be be reused across different 
minimizations, amortizing the JIT time

○ For example, possible reuse in profile likelihood scans

Using AD drastically reduces minimization time on top of the 
new CPU backend in ROOT 6.32.

Bottom line: 10x faster minimization compared to ROOT 6.30.

Can be amortized by 
reusing the NLL
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https://github.com/root-project/rootbench
https://indico.jlab.org/event/459/contributions/11570/
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Experiments with ATLAS Benchmark models

● Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks.

○ Constant factor of the consumption by primal function.
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Benchmarks with the CMS Higgs Observation Model
● Breaking news in April 2024: CMS published 

RooFit-based Higgs observation likelihood!

● Very heterogeneous likelihood: 672 parameters in 

102 channels with

○ Template histogram fits

○ Analytical shape fits, numerical integration 

necessary in some cases

● Perfect example to test the new RooFit developments

See also the presentation on CMS analysis tools at this 

conference.
Screenshot from the README of the open likelihood:
You can re-discover the Higgs.
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https://repository.cern/records/c2948-e8875
https://indico.cern.ch/event/1291157/contributions/5889475/
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Benchmarks with the CMS Higgs Observation Model
● We implemented necessary free functions for the 

generated code in a custom CMS combine branch
● Benchmarked one minimization pass

Observations:

● The new CPU code path default in ROOT 6.32 is a big 
improvement to the old RooFit, possibly making many 
custom improvements in combine obsolete

● The AD backend further reduces minimization time
● Printing out the generated NLL code helps a lot to 

understand what’s actually fitted

Instructions to reproduce in backup

Can be amortized by 
reusing the NLL
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https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit/compare/main...guitargeek:HiggsAnalysis-CombinedLimit:roofit_ad_ichep_2024?expand=1#diff-8bc8160707ee6d1e8eb19585990c94fc0e29492c9a17e88e3a6115e18ca53098
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Benchmarks with the CMS Higgs Observation Model
One more observation on numerical stability:

● For these kinds of fits, the derivatives are small compared to the NLL value
● Numerical differentiation often fails because the finite differences are smaller than numerical 

precision on the NLL
● Solution so far - offsetting the NLL but initial value:

pdf.createNLL(data, RooFit::Offset(true))

Problems with this:

● Offsetting might fail if initial value is far from the minimum
● Bookkeeping of offsets is error-prone

With AD, the offsetting is not necessary anymore!

36 - FCN = -9801946.549  Edm =   0.01129396511

37 - FCN = -9801946.566  Edm =   0.01497173883

38 - FCN = -9801946.574  Edm =  0.007242353199

39 - FCN = -9801946.583  Edm =  0.004954953322

40 - FCN = -9801946.589  Edm =  0.005774308843

41 - FCN = -9801946.596  Edm =  0.004695329674

42 - FCN = -9801946.602  Edm =  0.004558156748

43 - FCN = -9801946.615  Edm =  0.008141300763

44 - FCN = -9801946.625  Edm =  0.004861879849

45 - FCN = -9801946.628  Edm =  0.003472778648

46 - FCN =  -9801946.63  Edm =  0.001782083931

47 - FCN = -9801946.631  Edm = 0.0007515760698

Minimizer output, showing the small 
changes wrt. large NLL value
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Possible next steps and perspectives
● Enabling analytic gradients by default if possible

● Work together with experiments to support your usecases and help out in integration RooFit 
AD in experiment frameworks

● Improve support for non-trivial functions, like numeric integrals

● Extend RooFits interfaces so it will be easy to get out the generated code and gradients to use 
them outside the RooFit minimization routines

● R & D on analytic higher-order derivatives that are used in Minuit

Your input and support is highly welcome!
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Conclusions
Source-code transformation AD with Clad fits naturally into the ROOT ecosystem and 

RooFit benefits from it in many ways:

● Faster likelihood gradients
● No need for tricks to get numerically stable gradients

● Likelihoods can be expressed in plain C++ without need for aggressive caching by 

the user or in frameworks like RooFit
○ Good for understanding the math: optimization gets decoupled from logic - simple code

○ Good for collaboration: simple C++ can easily be shared and used in other contexts
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Backup
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About Clad - usage example in ROOT interpreter
// example.C

#include <Math/CladDerivator.h>

double f (double x, double y) {

 return x*y; // <— Function to be differentiated

}

void example() {

 // Call clad to generate the derivative of f wrt x.

 auto f_dx = clad::differentiate(f, "x");

 // Execute the generated derivative function.

 std::cout << f_dx.execute(/*x=*/3, /*y=*/4) << std::endl;

 std::cout << f_dx.execute(/*x=*/9, /*y=*/6) << std::endl;

 // Dump the generated derivative code to stdout.

 f_dx.dump();

}

4 // df/dx for (x,y) = (3, 4)
6 // df/dx for (x,y) = (9, 6)

double f_darg0 (double x, double y) 
{
  double _d_x = 1;
  double _d_y = 0;
  return _d_x * y + x * _d_y;
}

root example.C

ROOT/Cling

Produces
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About Clad - usage example standalone
// Source.cpp
#include "clad/Differentiator/Differentiator.h"
#include <iostream>

double f (double x, double y) {
  return x*y; // <— Function to be differentiated
}

double main() {
  // Call clad to generate the derivative of f wrt x.
  auto f_dx = clad::differentiate(f, "x");

  // Execute the generated derivative function.
  std::cout << f_dx.execute(/*x=*/3, /*y=*/4) << std::endl;
  std::cout << f_dx.execute(/*x=*/9, /*y=*/6) << std::endl;

  // Dump the generated derivative code to stdout.
  f_dx.dump();
}

4 // df/dx for (x,y) = (3, 4)
6 // df/dx for (x,y) = (9, 6)

double f_darg0 (double x, double y) 
{
  double _d_x = 1;
  double _d_y = 0;
  return _d_x * y + x * _d_y;
}

clang++ -I clad/include/ -fplugin=clad.so Source.cpp

Compilation (+ execution)

Produces
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Providing custom derivatives to Clad
double my_pow (double x, double y) {
  // … custom code here for computing xy …  
}

namespace clad {
namespace custom_derivatives {
// Providing custom code for derivative computation of my_pow.
double my_pow_darg0(double x, double y) {return y * my_pow(x, y - 1);} // ∂f/∂x.
double my_pow_darg1(double x, double y) {return my_pow(x, y) * std::log(x);} // ∂f/∂y.
}}

● Some use cases:
○ Calling a library function whose definition is not available.

○ Efficiency reasons - you have a better way.

○ Implicit function to be differentiated - for ex. requires solving some maximization problem
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Some recent changes in Clad enabled these results
● Handling constant pointers for reverse mode AD : #919

● Reducing tape storage operations inside Clad for reverse mode AD : #655

● Dynamic capturing of differentiation plans - capturing and traversing call graph : #766, #873

● To Be Recorded (TBR) analysis in reverse mode:

Reverse-mode AD requires storing intermediate values that have impact on derivatives to restore 

values in the backward pass.  However, we don’t actually have to store all of them:

Thanks a lot to the Clad team for these improvements!
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https://github.com/vgvassilev/clad/pull/919
https://github.com/vgvassilev/clad/pull/655
https://github.com/vgvassilev/clad/pull/766
https://github.com/vgvassilev/clad/pull/873
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To Be Recorded (TBR) analysis in reverse mode: 
example

double f_exp(double x, size_t N) {
    for (int i=0; i < N; ++i)
        x = 2 * x;
    return x;
}

void f_exp_grad(...) {
    // forward pass
    …
    _t0 = 0;
    for (i = 0; i < N; ++i) {
        _t0++;
        x = 2 * x;
    }
    …
    // reverse pass
    for (; _t0; _t0--) {
        …
    }
}

void f_exp_grad(...) {
    // forward pass
    …
    clad::tape<double> _t1 = {}; // used to store x
    _t0 = 0;
    for (i = 0; i < N; ++i) {
        _t0++;
        clad::push(_t1, x); // x is only transformed linearly so it’s
        x = 2 * x;               // value is not needed in the reverse pass
    }
    …
    // reverse pass
    for (; _t0; _t0--) {
        --i;        // i is never used to compute the derivatives
        x = clad::pop(_t1); // no need to restore x
        …
    }
}

Original function

TBR analysis off TBR analysis on

In RooFit, more than 30% 

code size reduction.

3x speedup in jit time.
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RooFit code generation: Gaussian example

Gauss(x, mu + shift, sigma * scale)

RooRealVar x("x", "", 0, -10, 10);
RooRealVar mu("mu", "", 0, -10, 10);
RooRealVar shift("shift", "", 1.0, -10, 10);
RooAddition muShifted("mu_shifted", "", {mu, shift});
RooRealVar sigma("sigma", "", 2.0, 0.01, 10);
RooConstVar scale("scale", "", 1.5);
RooProduct sigmaScaled("sigma_scaled", "", sigma, scale);
RooGaussian gauss{"gauss", "", x, muShifted, sigmaScaled};

double gauss(double *x)
{
   using namespace RooFit::Detail;

   return EvaluateFuncs::gaussEvaluate(x[3], (x[0] + x[1]), (x[2] * 1.5)) /
      AnalyticalIntegrals::gaussianIntegral(-10., 10., (x[0] + x[1]), (x[2] * 
1.5));
}

void gauss_grad(double *x, double *out);

1. Mathematical concept
2. RooFit user code
3. Automatic translation of RooFit model to simple C++ code
4. Gradient of C++ code automatically generated with Clad
5. Gradient code wrapped back into RooFit object
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Planned improvements to further speedup RooFit
On the Clad side:

● Using Automatic Differentiation for computing Hessians
○ Computing only the diagonal entries of Hessians for the seeding step.

● Further improvements in Clad to remove redundant computations for Gradients.
○ Advanced analysis for improving the efficiency of Gradient computations.

● Experimenting with make the gradient computation parallelizable.
○ Trying vector forward mode for Hessians.

On the ROOT side:

● More efficient Hessian evaluations: minimization is fast now, evaluating the Hessian of the NLL for 
parameter estimation became the new bottleneck
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Reproducing the benchmark fits: ATLAS likelihood
● ATLAS HistFactory model (49 HistFactory channels, 739 parameter in total).
● It is part of rootbench and can be built with a special configuration flag.
● You need at least ROOT 6.32.04 (recipe below uses ROOT master on lxplus).

# source LCG environment with ROOT nightlies
source /cvmfs/sft.cern.ch/lcg/views/dev3/latest/x86_64-el9-gcc13-opt/setup.sh

git clone git@github.com:root-project/rootbench.git
cd rootbench
mkdir build
cd build
cmake -DROOFIT_ATLAS_BENCHMARKS=ON ..
make -j8
cd root/roofit/atlas-benchmarks/
./download_workspaces.sh
./roofitAtlasHiggsBenchmark
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Reproducing the benchmark fits: CMS likelihood
● CMS Higgs discovery model (102 channels, 672 floating parameter in total).
● Requires custom “CMS combine” branch.
● You need at least ROOT 6.32.04 (recipe below uses ROOT master on lxplus).

# source LCG environment with ROOT nightlies
source /cvmfs/sft.cern.ch/lcg/views/dev3/latest/x86_64-el9-gcc13-opt/setup.sh

git clone https://github.com/guitargeek/HiggsAnalysis-CombinedLimit.git  HiggsAnalysis/CombinedLimit
cd HiggsAnalysis/CombinedLimit
git checkout roofit_ad_ichep_2024
mkdir build install
cd build
cmake -DCMAKE_INSTALL_PREFIX=../install  ..
make install -j8
cd ..
chmod +x install/bin/*
wget "https://repository.cern/records/c2948-e8875/files/cms-h-observation-public-v1.0.tar.gz"
tar -xf cms-h-observation-public-v1.0.tar.gz
source env_standalone.sh
text2workspace.py cms-h-observation-public-v1.0/125.5/comb.txt  --mass 125.5
python scripts/fitRooFitAD.py
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https://repository.cern/records/c2948-e8875
https://github.com/guitargeek/HiggsAnalysis-CombinedLimit/tree/roofit_ad_ichep_2024

