

Finanziato dall'Unione europea

Centro Nazionale di Ricerca in HPC,

Big Data and Quantum Computing

Generative models and seq2seq techniques for the flash-simulation of the LHCb experiment

M. Barbetti (INFN CNAF) on behalf of the LHCb Simulation Project

42nd International Conference on High Energy Physics (ICHEP) | 20 July 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Computing requirements for simulation

The baseline for simulation at LHCb is **Detailed Simulation**:

- simulation of all radiation-matter interactions
- simulated hits in detectors processed as real data
- high CPU cost (more than 90% used during LHC Run 2)
- <u>unsustainable</u> in the long term (*i.e.*, LHC Run 3+)

The **new Run 3 LHCb detector** (more details in the G. Tuci's <u>parallel talk</u> and Y. Ahmis' <u>plenary talk</u>) is collecting an increased amount of data. This puts **severe pressure on the CPU resources** to meet the upcoming and future requests for simulated samples.

Relying only on Detailed Simulation will far exceed the computing budget (pledge) of the experiment \rightarrow evolving the simulation technologies is mandatory!

LHCb Integrated Recorded Luminosity in pp by years 2010-2024

Fast simulation vs. Flash simulation

Methods to **speed up** the Geant4-based simulation productions:

- upgrade of the simulation framework (including multi-threading)
- leveraging GPU-acceleration (e.g., use AdEPT, Celeritas)
- reuse of the not-signal part of the event, **ReDecay** [2]

Fast Simulation techniques to parameterize the detector <u>low-level</u> <u>response</u> without relying on Geant4:

- **Point library** for Calorimeters energy deposits [3]
- Generative Models (e.g., GAN, VAE) for Calorimeters energy deposits [4]

Flash Simulation (also called *Ultra-Fast* or *parametric*) defines a <u>more</u> <u>radical approach</u> by replacing Geant4 and reconstruction with parameterizations able to **directly transform** generator-level particles into analysis-level reconstructed objects

Lamarr: the LHCb flash-simulation option

Lamarr [5-7] is the novel <u>flash-simulation framework</u> of LHCb, able to offer the fastest option for simulation. Lamarr consists of a **pipeline of** (ML-based) **modular parameterizations** designed to replace both the simulation and reconstruction steps.

The Lamarr pipeline can be split in two branches:

- a branch treating charged particles relying on tracking and particle identification (RICH + MUON + GPID) parameterizations
- 2. a branch treating neutral particles that require an accurate parameterization of the ECAL detector

The Lamarr pipeline for the tracking system

Lamarr relies on the following models to parameterize the high-level response of the LHCb tracking system for a set of quasi-stable charged particles (electrons, muons, and hadrons):

- **propagation** → approximates the trajectory of a charged particles through the dipole magnetic field
- acceptance → predicts which of the generated tracks lay within a sensitive area of the detector
- efficiency → predicts which of the generated tracks in acceptance are properly reconstructed by the detector
- **resolution** \rightarrow parameterizes the errors introduced by the reconstruction algorithms to the track parameters
- **covariance** → parameterizes the uncertainties assessed by the Kalman filter procedure

The Lamarr pipeline for the PID system

Lamarr relies on the following models to parameterize the high-level response of the LHCb particle identification system:

- **RICH** \rightarrow parameterizes DLLs resulting from the RICH detectors
- $\blacksquare \quad \textbf{MUON} \rightarrow \textbf{parameterizes likelihoods resulting from the MUON system}$
- **isMuon** → parameterizes the response of a FPGA-based criterion for muon loose boolean selection
- **Global PID** → parameterizes the global high-level response of the PID system, consisting of CombDLLs and ProbNNs [8]

Models specialized for **muons**, **pions**, **kaons**, and **protons** are provided by Lamarr for each set of PID variables.

Parameterizations for charged particles

Unambiguous relation between k generated particles and k (<=) reconstructed tracks \rightarrow 2 families of models

Efficiency model

Neural network trained to perform a <u>classification task</u> to capture the fraction of "good" candidates (*e.g.*, accepted, reconstructed, selected) as a function of <u>generator-level quantities</u>

"Resolution" model

GAN [9] trained to learn the <u>probability distributions</u> of **variables at reconstructed-level** (e.g., reconstructed errors, PID likelihoods, classification probabilities) considering <u>generator-level conditions</u>

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

The ECAL detector in Lamarr

The flash-simulation of the ECAL detector is a <u>more complex</u> <u>task</u> due to **secondary processes** that lead to have *n* generated particles responsible for *m* reconstructed calorimetric clusters (with $n \neq m$)

While for <u>background</u> modeling the *n*-to-*m* relations cannot be evaded, in case of **signal photons** Lamarr is investigating a strategy similar to the one employed for charged particles (track + PID) and eligible once a **photon-cluster matching rule** is defined

Geometric rules allow to define <u>reconstructed photons</u> by enforcing **unambiguous** *k*-to-*k* relations

Parameterizations for signal photons

<u>Forcing</u> an <u>unambiguous relation</u> between k generated photons and k (<=) reconstructed clusters \rightarrow 2 families of models

Efficiency model

Neural network trained to perform a <u>classification task</u> to capture the fraction of *reconstructed* signal photons (photons that geometrically match with clusters) as a function of <u>generator-level quantities</u>

"Resolution" model

GAN [9] trained <u>with conditions</u> (generator-level quantities) to parameterize both the **resolution effects** and **photon identification variables** as obtained from reconstructed ECAL clusters

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Validation of the flash-simulation paradigm

Lamarr reproduces the high-level response of the LHCb detector by relying on a **pipeline of ML-based modules**

To validate the *flash-simulation* philosophy, we employ the following decay mode:

- interesting *B*-meson decay channel
 - <u>crucial</u> for *charmonium* spectrum studies (latest results in the parallel talks from <u>V. Yeroshenko</u> and <u>L.M. Garcia Martin</u>)
- **kaons**, **protons**, and **photons** in a single decay
 - most of the particle species for which Lamarr provides models
- Lamarr-based samples, detailed simulated samples, and plots obtained from the LHCb analysis software
 - enabling to test the integration with the LHCb software stack
- training samples made of a cocktail of heavy flavour decays
 - □ the validation decays represents a <u>negligible fraction</u> of the sample

The Lamarr software

Lamarr has been designed with dual capabilities:

- being a stand-alone simulation framework:
 - a fast development cycle in Python environments as typical in machine learning projects
 - use of ML backend-agnostic models by relying on a *trancompilation* approach [10]
- being seamlessly integrated with Gauss(-on-Gaussino) [1,11]:
 - □ interface with all the LHCb-tuned physics generators
 - access to <u>Grid distributed computing resources</u> and production environment
 - providing ready-to-use datasets for analysis

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Exploiting Cloud resources for validation

Great effort has been spent to integrate Lamarr with modern Cloud technologies, like <u>Kubernetes</u> (K8s):

- access to <u>Cloud computing resources</u>
- hardware-aware workflows (on CPU and/or GPU)
- quasi-interactive production environment for simulations

By relying on a <u>K8s-powered snakemake-based workflow</u>, the Lamarr validation campaign was successfully performed combining the resources provisioned by **three different Cloud computing sites** scattered across Italy (Cloud@CNAF, CloudVeneto, and Cloud@ReCaS-Bari)

The workload for validation was distributed among the 3 sites by relying on the *Virtual Kubelet* mechanism with <u>interLink</u> as provider allowing to expand K8s **beyond the local cluster nodes**

Lamarr sanity checks

The described workflow allows to well reproduce the **invariant masses** of all the hadrons involved in the validation decay chain, demonstrating the capabilities of Lamarr to parameterize the high-level response of the LHCb experiment:

- integration with LHCb-tuned generators → good generated kinematics ✓
- tracking pipeline \rightarrow smearing effects and reconstruction uncertainties
- <u>PID pipeline</u> → protons and kaons PID variables ✓
- ECAL pipeline → "efficiency" and smearing effects ≈

Enforcing *k*-to-*k* relations, the pipeline chosen for signal photons has <u>limited</u> <u>capabilities</u> and fails to reproduce the plateau of wrongly associated photons shown in the *B* mass from Geant4 \rightarrow need for an evolution of the ECAL model

NOTE As Detailed Simulation, also flash-simulated datasets can be **further processed** by using the standard combinatorial selection algorithms \rightarrow invariant mass and decay vertexing

Missione 4 • Istruzione e Ricerca

Facing the n-to-m ECAL problem

In general, a reconstructed cluster *matches* with a generated photon if <u>any fraction</u> of the energy deposited comes from that photon \rightarrow **particle-to-particle correlation problem**

The <u>correlations</u> require that the ECAL flash-simulation relies on models able to describe the high-level response due to all the particles traversing the detector in an event at once \rightarrow we need an **event-level parameterization** for ECAL

Lamarr is investigating the use of **seq2seq models**, like <u>Transformers</u> [12] and <u>GNNs</u> [13], to face the *n*-to-*m* problem and the capabilities of the **attention mechanism** to capture the correlations between generated particles and reconstructed objects

Conclusions

- Lamarr offers to LHCb the <u>fastest option for simulation production</u>
 - **pipelines of subsequent ML models** succeed in implementing the *flash-simulation* paradigm
- Lamarr is designed as a *stand-alone* simulation framework well-integrated with the LHCb Simulation software
 - the *transcompilation* approach allows to deploy the ML models as <u>plugins</u> within the framework
- <u>Validation campaigns</u> ongoing to test the validity of the flash-simulation philosophy and software implementation
 - test also for a quasi-interactive production environment for simulation on federated Cloud resources
- Validation studies have highlighted **pros** and **cons** of employing flash-simulation strategies
 - significant <u>reduction of the simulation cost</u> for high-quality simulated samples
 - work still needed to face the *n*-to-*m* relation problem for an **event-level description** of the detector response

Any questions or comments?

Lucio Anderlini (INFN Firenze) email: lucio.anderlini@cern.ch

Matteo Barbetti (INFN CNAF) email: <u>matteo.barbetti@cern.ch</u>

References

- 1. LHCb collaboration, M. Clemencic et al., J. Phys.: Conf. Ser. 331 (2011) 032023
- 2. D. Müller et al., Eur. Phys. J. C 78 (2018) 1009, arXiv:1810.10362
- 3. LHCb collaboration, M. Rama et al., EPJ Web Conf. 214 (2019) 02040
- 4. V. Chekalina et al., EPJ Web Conf. 214 (2019) 02034, arXiv:1812.01319
- 5. L. Anderlini *et al.*, PoS ICHEP2022 (2022) 233
- 6. LHCb Simulation Project, M. Barbetti, arXiv:2303.11428
- 7. LHCb Simulation Project, L. Anderlini *et al.*, <u>EPJ Web Conf. **295** (2024) 03040</u>, <u>arXiv:2309.13213</u>
- 8. LHCb collaboration, R. Aaij et al., Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352
- 9. I. J. Goodfellow et al., arXiv:1406.2661
- 10. L. Anderlini and M. Barbetti, PoS CompTools2021 (2022) 034
- 11. M. Mazurek, M. Clemencic and G. Corti, PoS ICHEP2022 (2022) 225
- 12. A. Vaswani *et al.*, <u>arXiv:1706.03762</u>
- 13. F. Scarselli et al., IEEE Trans Neural Netw 20 (2009) 61
- 14. R. Conlin et al., Eng. Appl. Artif. Intell. 100 (2021) 104182
- **15.** M. Zaheer *et al.*, <u>arXiv:1703.06114</u>
- 16. F. Vaselli et al., <u>CERN-CMS-NOTE-2023-003</u>
- 17. G. Papamakarios et al., arXiv:1912.02762

BACKUP

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Priorities for flash-simulated samples

The simulation production is driven by the LHCb physics program, *i.e.* heavy hadron decays

- most of the events (76%) don't require ECAL
- photons and electrons are less requested

The simulation cost is driven by Geant4

- simulating secondary particles is expensive
- RICH and calorimeter systems dominate the cost
- parameterizing the detector response allows to save a lot of computing resources

Priorities for LHCb flash-simulation:

- 1. tracking + PID \rightarrow most of charged particles (no electrons)
- **2.** ECAL \rightarrow photons
- 3. tracking + PID → specialized treatment for electrons

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Integration with the LHCb software stack

The integration of Lamarr with Gauss unlocks:

- interface with all the LHCb-tuned physics generators (e.g., Pythia8, EvtGen)
- compatibility with the distributed computing middleware and production environment
- providing ready-to-use datasets for analysis

Most of the Lamarr parameterizations are ML-based:

- need for a fast development cycle (new architectures or training strategies easily outperform predecessors)
- Al community extremely versatile in terms of software technologies (no decades tradition of HEP community)

Models deployment \rightarrow *transcompilation* approach [10,14]

- compatibility with the <u>scikinC</u> package
- models compiled as shared library and dynamically linked to the main application (Gauss)
- distribution through WLCG nodes via <u>cvmfs</u>
- dynamic links avoid to recompile the main application for model updates → fast development cycle

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

The transcompilation approach

For a seamless integration of the trained parameterizations in the LHCb simulation framework models have to be applied to each single particle \rightarrow **thousands of independent calls per event**

Even a small latency (*e.g.*, *context switching*) wastes unacceptable amount of CPU resources

Lamarr solution \rightarrow we transpile the trained models in C and compile them to binaries, dynamically linked at runtime

- LHCb tool: <u>scikinC</u> [10]
- Possible partial migration to: <u>keras2c</u> [14]

Photon-cluster association issues

Seq2seq approach

Aiming to directly facing the particle-to-particle correlation problem, the ECAL response can be described as a **translation problem**

- <u>source</u>: sequence of *n* generated photons
- <u>target:</u> sequence of *m* reconstructed clusters

Transformer-based model investigated to describe this *n*-to-*m* system

- encoder-decoder architecture powered by attention mechanism [12]
- encoder designed to process the source sequence (*i.e.*, generated photons), and parameterize photon-to-photon correlations
- *decoder* designed to process the target sequence (*i.e.*, reconstructed clusters), and parameterize both cluster-to-cluster and photon-to-cluster correlations
- training driven by a **regression task** → event-level ECAL description
- convergence trick \rightarrow adversarial-powered training relying on DeepSets [15]

Graph2graph approach

Relaxing the sorting statement at the basis of the seq2seq approach, we end up with the fact the graphs better describe the *topology* of calorimeter simulations \rightarrow graph2graph approach

GNN-based model investigated to describe this *n*-to-*m* system

- heterogeneous graph composed of two families of nodes (photon/cluster)
- photon edges follow a geometrical criteria in the (x, y, E)-space
- cluster edges randomly initialized to finite number of photon/cluster nodes
- message passing procedure powered by the attention mechanism [12]
 - immutable photon features and <u>updatable</u> photon hidden states
 - □ <u>updatable</u> cluster features and <u>updatable</u> cluster hidden states
- training driven by a **regression task** \rightarrow event-level ECAL description
- convergence trick → adversarial-powered training relying on DeepSets [15]

RICH detectors: alternative solution

Recent developments in deep generative models reveal the effectiveness of using **Normalizing Flows** for fast/flash detector simulation [16]

Preliminary study for LHCb flash simulations \rightarrow RICH system

- same input/output of GAN-based models
- conditioned pdf directly learned by Flow-based models
- Masked Autoregressive Flows (MAF) [17] used for these studies

Promising results in proton-kaon separation

- as for GANs, RichDLLpK not included in input conditions
- GAN performance benefits from the auxiliary training process (RichDLLpK only used by the discriminator)
- MAF-based models obtain good results even without the auxiliary training process

MUON detectors: alternative solution

Recent developments in deep generative models reveal the effectiveness of using **Normalizing Flows** for fast/flash detector simulation [16]

Preliminary study for LHCb flash simulations \rightarrow MUON system

- same input/output of GAN-based models
- conditioned pdf directly learned by Flow-based models
- Masked Autoregressive Flows (MAF) [17] used for these studies

Unsatisfactory results in muon-proton separation

- as for GANs, muDLL **not included** in input conditions
- GAN performance strongly benefits from the auxiliary training process (muDLL only used by the discriminator)
- MAF-based models fail to reproduce the peaked structures of the muDLL distribution without relying on the auxiliary procedure

Transformer architecture

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Deep Sets architecture

Hopaas: multi-site optimization campaigns

source: https://hopaas.cloud.infn.it

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Hopaas: client-server system

source: https://hopaas.cloud.infn.it

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Hopaas: web dashboard

source:

https://hopaas.cloud.infn.it