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sPHENIX experiment
• Located at RHIC accelerator at BNL (USA)

• Running period 2023-2025

• 1.4 T Magnetic Field, |𝜂| ⩽1.1

• Tracking detectors (MVTX, INTT, TPC, TPOT) and 

calorimeters (EMCAL, HCAL), and endcaps (MBD, 

sEPD, ZDC, SMD)

• Tracking detectors capable of streaming readout

− Hybrid DAQ supporting 15 kHz triggering

• sPHENIX has the first mid-rapidity HCAL at RHIC!
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Motivation – Heavy Flavor

• RHIC collision rate is around 2-3 MHz, sPHENIX readout 15 kHz (DAQ - 300 Gb/s)

− Trackers are Streaming Readout (SRO) capable, but can’t save all TPC data

• 10% trigger-enhanced SRO increases HF MB rate ~ 300 kHz

• ML HW tagging aims to sample remaining 90% of the luminosity using the tracklet 

reconstruction from the silicon detectors

1. Integrate the AI-based heavy flavour trigger system demonstrator into the sPHENIX 

experiment for p+p run in 2024 to R&D its feasibility, requirements, and constrains

2. Deploy future system on Electron-Ion Collider (EIC)

− AI-based electron tagging with streaming readout to identify the (non)interesting Deep-
Inelastic-Scattering (DIS) processes in the e+p/A collisions.

▪ based on the measured scattering electron energy and direction 
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FastML - Who are we?

• Cross-discipline group of sPHENIX and LHC physicist, engineers, and computer 

scientists working on firmware-based ML applications

− sPHENIX is benefiting from a 2020 Department of Energy (DOE), USA funding call

• The goals

− Use MVTX and INTT hits to identify HF event based on topology

▪ Continuously monitor the beam spot and changing detector conditions

− Send tag downstream to readout TPC 

− Trigger signal must be done within 10 us!

▪ Requires embedding ML algorithms on FPGA (we will use FELIX-712 board)

@ renewed for 2 more years in 2023
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sPHENIX Readout and AI-ML HF Trigger Integration  
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The ML algorithm pipeline

• Due to latency limitation all components need to be deployed on FPGA

1. Hit decoding – conventional logic

2. Hit clustering – conventional logic

3. Track construction 

1. Track candidate generation 

▪ Connect all clusters (nodes) together (edges) while applying geometric constrain

− Reduced number of edges ~50% at the cost of 0.4% accuracy

2. Edge candidate classification – GCN (arXiv:1609.02907)

▪ model predicts true edge candidates

3. Construct final track from the edges

4. Transverse momentum 𝑝𝑇 prediction

− Least square method ~ 15% accuracy improvement

5. Trigger detection - Bipartite Graph Network with Set Transformer (BGN-ST) (10.1007/978-3-031-26409-2_4)

− Topological selection of HF signal
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• Bipartite Graph Network with Set Transformer (BGN-ST)

• Attention-based algorithm allows the modeling of following information

1. Local track-to-track interaction

▪ Determine whether two tracks share same vertex

2. Track-to-global interaction

▪ Determine collision vertex

3. Global-to-track interaction

▪ Whether track origin vertex is centered around collision vertex

• The loop

1. Initial track definition

2. Weights assigned to each link (Attention)

1. Connection to vertex information

3. Vertex information go through feed-forward NN

4. Update track information

Track 
-to-

global

Global
-to-

track

Local 
track  
-to-

track

BGN-ST Architecture
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• Main element – SEBA block

− Multiheaded attention

− Bipartite aggregation

• Track node input vectors (total 37 features)

1. 5 hits (MVTX + INTT)

2. Length of each edge: 𝐿 = 𝑥𝑖+1 − 𝑥𝑖
3. Angle between edges

4. Total length of edges

5. Track radius (∝ track 𝑝𝑇)

• Aggregators

− Vertices

• Model based on PyTorch and PyTorch Geometric

• Initial training on simulated data from MVTX and INTT 

− On GPU - NVIDIA Titan RTX, A500, and A6000

BGN-ST Architecture
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1. Triggering on 𝐷0 → 𝜋𝐾 (0.1% events)

Model accuracy studies

− Trigger detection on tracks vs clusters (hit-based)

▪ Accuracy: 90.22% (BGN-ST, track construction, model v2) vs 85% (GCN, hit-based)

3. Triggering on Beauty decays, (0.05% events)

− No pileup

▪ Accuracy: 97.38% (BGN-ST, track construction, model v2)

▪ Clusters -> Edge Candidate Generation -> Trigger prediction: Accuracy 91.53% (Graph Attention Network, hit-based)

▪ Clusters -> Trigger prediction: Accuracy 90.57% (GarNet, hit-based)

− Pileup (~350 hits + 65 noise)

▪ Clusters -> Trigger Prediction: Accuracy 88.52% (GarNet, hit-based)

• 3 MHz collision rate

• 10% HF efficiency (ext. 

readout)

• 1 kHz available for 

additional triggers

• 3000 MB rejection needed

Note: all Accuracies are calculated on 50% signal/background samples

Set Transformer: arXiv:1810.00825
GarNet: arXiv:1902.07987
PN: arXiv:1902.08570
SAGPool: arXiv:1904.08082
GCN: arXiv:1609.02907
Graph att. Net.: arXiv:2105.14491
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• 3 MHz collision rate
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The charm sample is plentiful, the aim is on rare beauty events 
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Attention provides slight improvement for clusters

Large accuracy increase reconstructing tracks! 
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Estimating 𝒑𝑻 from vertex detectors resulted in 14% accuracy increase! 23x rate increase comparing to random selection!

Pileup has a small effect!

Attention provides slight improvement for clusters

Large accuracy increase reconstructing tracks! 
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1. Team lead by the Georgia Institute of Technology (GIT)

− Direct translation using FlowGNN (ArXiv:2204.13103)

− Goal: 100-200 nodes, 200-500 edges

1. Implementation of edge classification

▪ 92 nodes, 142 edges

▪ Measured Start-to-end latency

− 150 us @ 130 MHz, edge classification v1

− 8.82 us @ 285 MHz, edge classification v2

2. Implementation of hit-based model

▪ Measured Start-to-end latency

− 9.2 us @ 180 MHz

− Detailed latency breakdown and parallelism exploration ongoing

▪ The effects of FlowGNN parameters 

Generation of the FPGA IP core – two parallel efforts

Utilization (Alveo U280)

LUT 194K (14.9%)

FF 214K (8.2%)

BRAM 406 (20.2%)

DSP 488 (5.4%)

Close discussion between model developers and FPGA engineers

Latency

N
o

d
e 

si
ze

1k graphs

Note: target board FLX-712 

is half the size of Alveo
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2. Team lead by the Massachusetts Institute of Technology (MIT) and Fermilab (FNAL)

− Based on High Level Synthesis for Machine Learning (hls4ml), a generalized python 
framework for machine learning inference in FPGAs

• Unfortunately, PyTorch Geometric is currently not supported in hls4ml

− Used in our attention-based model (Estimated 3-4 us latency for edge classification v1)

− Would require extensive customization of current hls4ml -> against its philosophy

− Developers are working on PyTorch Geometric support and will be released in 2025!

• We moved focus for hit-based beauty model that is based on GarNet which is currently supported in hls4ml

Generation of the FPGA IP core – two parallel efforts

arXiv:2112.02048

arXiv:2103.05579
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Realizing the firmware

Decision module
INTT FELIX cards (x8)
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Rx
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Detector sorter 
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Chip sorter
Chip sorter

Chip sorter
Chip sorter

Decision 

Algorithm
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Schematic courtesy of Cameron Dean

144 links @ 3.2 Gbps 

96 links @ 14 Gbps • Clusters can be 
assembled as they 
arrive due to 
column-by-column 
ALPIDE readout

• 13.5 µm cluster 
resolution from 21 
bits

• Low occupancy 
allows online FPGA 
based decoding

FELIX-712 board is 
used to host the GNN 
algorithms 
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Summary and Outlook

• The model has been developed and tested on HF event simulation for sPHENIX

− provides good precision while analyzing two detector hemispheres independently

− Current focus on further improvement in model ability to handle pileup event – accuracy 
and latency studies

• IP core (FPGA code) generation by two teams – FlowGNN and hls4ml

− Huge progress and improvement of the utilization and latency

− Iteration with model developers

• All components in the FPGA pipeline are developed

− Final push to finalize development of each FPGA component putting them together on a 
single FPGA

▪ Very challenging in meeting the utilization and timing constrains

− FLX-712 boards to serve as AI engine installed in sPHENIX counting house

• A new FLX-182 board arrived to BNL which will be the base for EIC development

− Probe the possibility of using off-the-shelf card (Alveo etc.)



297/19/2024 297/19/2024

Thank you for your attention

Artificial intelligence and machine learning have the potential to revolutionize our 

approach collecting, reconstructing and understanding data, and thereby 

maximizing the discovery potential in the new era of nuclear physics experiments.
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MVTX and INTT

INTT

TPC

MVTX

MVTX - Active area ~1685 cm2

• Based on ALICE ITS2 ALPIDE chips, with ATLAS FELIX backend

− Monolithic Active Pixel Sensors

− Very fine pitch (27 μm x 29 μm)

− Event Time resolution ~ 5 μs

− 3 layers, 48 staves total, 9 chips per stave ~ 230M total channels

INTT

• Silicon Strip Detector

− Hamamatsu silicon modules

− Pitch 78 μm x 16 (or 20) mm

− Excellent Time resolution ~100 ns

     (100 ns is the RHIC BC time)

− 2 layers, 56 ladders total, 360k channels
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• The Global Level 1 Trigger (GL1) and the machine clock is distributed via 

Granule Timing Module (GTM)

− GL1 trigger is used by calorimeters and the TPC

− GL1 transmits clock and trigger to the vGTM, which then transmits it to the FEE

▪ vGTM is the adapter to a given detector

▪ GL1 is maintaining the BUSY received from vGTM

The timing and trigger distribution

FEEFEEFEE
FELIX
FELIX
FELIX

Trigger Inputs
• Up to 4 LEMO and  

4 fibers
• oHCAL, MBD, EMC, 

iHCAL, sEPD, ZDC

Granule

Granule
LL1

GL1

Machine clock

BUSY

GL1
Granule

vGTM FEMFEMFEM
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Buffer
Box

The DAQ–AI Data Flow

• Motivation to use FELIX board:

− To reuse the PCIe implementation (16-lane Gen-3) and software tools provided by the 
FELIX developers 

− on-board FPGA is a Kintex Ultrascale XCKU115FLVF1924-2E

AI engine

• The decision signal of heavy flavor event 

from the AI-Engine will be sent out via the 

LEMO connectors to the sPHENIX GTM/GL1 

system to initiate the TPC readout in the 

triggered mode

• GPU based feed-back system for the 

beamspot monitoring
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The latency constrains

• The TPC buffers can hold up to 30 μs of data

− The goal of this project is to aim for 10 μs collision-trigger latency to capture the TPC 
stream

• The latency breakdown

1. MVTX readout window 5 μs – not fixed interaction-readout latency!

2. IR -> Counting house ~0.3 μs (81 m fibres) 

3. FELIX -> AI data forward, decoder buffers ~ 0.6 μs (@240 MHz) 

4. Clusterizer + Trigger decision (currently 9.2 μs for hit-based model!)

5. AI -> GTM -> TPC FELIX (negligible, all three sits in Counting house)
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Motivation – The challenges

• Real-time selection of rare decays of HF particles

− requires continuous monitoring and adjustment of the 

▪ beam trajectory (“beam spot”) – in time periods of seconds to hours, the position and shape can 
change (this will affect the HF the topology)

▪ detector alignment, conditions and anomalies 

• Adapt AI to continuous learning and changing conditions -> adaptive learning

− Development of real-time autonomous closed loop adaptive learning system
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Predicted timeline

• Project funded 

by DOE FOA

• Initial 

simulations 

constructed

• First data for 

algorithm 

training 

• MVTX & INTT 

SRO 

• Fast tracking 

& trigger  

algorithms in 

place

• Initial FPGA 

bitstream 

synthesis

• GPU 

feedback 

machine R&D

• Refine 

interface 

between 

system and 

detectors

• Improve 

algorithms 

with latest 

data stream 

and 

commissioning 

info

• Pre-

commissioning 

• Deploy device 

at sPHENIX 

pp/pA run

• Take 

advantage of 

new 

technology if 

required

• Deploy device 

at EIC

2021 2022 2023 2024

We are here!
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DCMDCM
DCMFEB

From sPHENIX to ePIC: Streaming + AI/ML DAQ

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Network

Switch

Buffer Box

EBDCDAM
DCMDCM

DCMFEB

Online 

Data Filter
EBDCDAM

DCMDCM
DCMFEB

EBDCDAM
DCMDCM

DCMFEB

EBDCDAM
DCMDCM

DCMFEB

EBDCDAM
DCMDCMDCMFEB

EBDCDAM
DCMDCM

DCMFEB

EBDCDAM
DCMDCM

DCMFEB

EBDCDAM
DCMDCM

DCMFEB

EBDCDAM

RDO

Online 

Data Filter

Online 

Data Filter

Monitoring

Timing 
System

Detector 
Control

To 
permanent 
storage and 
nearline 
processing

O(10 Tbps) O(0.5 Tbps) O(0.1 Tbps)

FEB = Front End Electronics Board
RDO = Front End Aggregation & E/O I/F
DAM = Data Aggregation Module
EBDC = Event Buffer / Data Compressor

O(2 Pbps)

(sPHENIX)
ePIC detector

SRO + AI/ML

from Jo’s talk at 
ePIC collab. mtg
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