

Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors

Jakub Kvapil for the FastML team and sPHENIX collaboration

42nd International Conference on High Energy Physics Prague, Czech Republic

Los Alamos National Laboratory (LANL) Fermi National Laboratory (FNAL) Massachusetts Institute of Technology (MIT) New Jersey Institute of Technology (NJIT) Oak Ridge National Laboratory (ORNL) Georgia Institute of Technology (GIT)

sPHENIX experiment

- Located at RHIC accelerator at BNL (USA)
- Running period 2023-2025
- 1.4 T Magnetic Field, $|\eta| \leq 1.1$
- Tracking detectors (MVTX, INTT, TPC, TPOT) and calorimeters (EMCAL, HCAL), and endcaps (MBD, sEPD, ZDC, SMD)
- Tracking detectors capable of streaming readout
 - Hybrid DAQ supporting 15 kHz triggering

Motivation – Heavy Flavor

- RHIC collision rate is around 2-3 MHz, sPHENIX readout 15 kHz (DAQ 300 Gb/s)
 - Trackers are Streaming Readout (SRO) capable, but can't save all TPC data
- 10% trigger-enhanced SRO increases HF MB rate ~ 300 kHz
- ML HW tagging aims to sample remaining 90% of the luminosity using the tracklet reconstruction from the silicon detectors
- 1. Integrate the AI-based heavy flavour trigger system demonstrator into the sPHENIX experiment for p+p run in 2024 to R&D its feasibility, requirements, and constrains
- 2. Deploy future system on Electron-Ion Collider (EIC)
 - AI-based electron tagging with streaming readout to identify the (non)interesting Deep-Inelastic-Scattering (DIS) processes in the e+p/A collisions.
 - based on the measured scattering electron energy and direction

FastML - Who are we?

- Cross-discipline group of sPHENIX and LHC physicist, engineers, and computer scientists working on firmware-based ML applications
 - sPHENIX is benefiting from a 2020 Department of Energy (DOE), USA funding call
- The goals
 - Use MVTX and INTT hits to identify HF event based on topology
 - Continuously monitor the beam spot and changing detector conditions
 - Send tag downstream to readout TPC
 - Trigger signal must be done within 10 us!
 - Requires embedding ML algorithms on FPGA (we will use FELIX-712 board)

Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors

A proposal submitted to the DOE Office of Science April 30, 2021 @ renewed for 2 more years in 2023

sPHENIX Readout and AI-ML HF Trigger Integration

On Detector Rack Room

1972024

- Due to latency limitation all components need to be deployed on FPGA
- 1. Hit decoding conventional logic
- 2. Hit clustering conventional logic

- Due to latency limitation all components need to be deployed on FPGA
- 1. Hit decoding conventional logic
- 2. Hit clustering conventional logic
- 3. Track construction
 - 1. Edge candidate generation
 - Connect all clusters (nodes) together (edges) while applying geometric constrain
 - Reduced number of edges ~50% at the cost of 0.4% accuracy

- Due to latency limitation all components need to be deployed on FPGA
- 1. Hit decoding conventional logic
- 2. Hit clustering conventional logic
- 3. Track construction
 - 1. Edge candidate generation
 - Connect all clusters (nodes) together (edges) while applying geometric constrain
 - Reduced number of edges ~50% at the cost of 0.4% accuracy
 - 2. Edge candidate classification GCN (arXiv:1609.02907)
 - model predicts true edge candidates

- Due to latency limitation all components need to be deployed on FPGA
- 1. Hit decoding conventional logic
- 2. Hit clustering conventional logic
- 3. Track construction
 - 1. Edge candidate generation
 - Connect all clusters (nodes) together (edges) while applying geometric constrain
 - Reduced number of edges ~50% at the cost of 0.4% accuracy
 - 2. Edge candidate classification GCN (arXiv:1609.02907)
 - model predicts true edge candidates
 - 3. Construct final track from the edges

- Due to latency limitation all components need to be deployed on FPGA
- 1. Hit decoding conventional logic
- 2. Hit clustering conventional logic
- 3. Track construction
 - 1. Edge candidate generation
 - Connect all clusters (nodes) together (edges) while applying geometric constrain
 - Reduced number of edges ~50% at the cost of 0.4% accuracy
 - 2. Edge candidate classification GCN (arXiv:1609.02907)
 - model predicts true edge candidates
 - 3. Construct final track from the edges
- 4. Transverse momentum p_T prediction
 - Least square method ~ 14% accuracy improvement

- Due to latency limitation all components need to be deployed on FPGA
- 1. Hit decoding conventional logic
- 2. Hit clustering conventional logic
- 3. Track construction
 - 1. Edge candidate generation
 - Connect all clusters (nodes) together (edges) while applying geometric constrain
 - Reduced number of edges ~50% at the cost of 0.4% accuracy
 - 2. Edge candidate classification GCN (arXiv:1609.02907)
 - model predicts true edge candidates
 - 3. Construct final track from the edges
- 4. Transverse momentum p_T prediction
 - Least square method ~ 15% accuracy improvement
- 5. Trigger detection Bipartite Graph Network with Set Transformer (BGN-ST) (10.1007/978-3-031-26409-2_4)
 - Topological selection of HF signal

- Bipartite Graph Network with Set Transformer (BGN-ST)
- Attention-based algorithm allows the modeling of following information
 - 1. Local track-to-track interaction
 - Determine whether two tracks share same vertex
 - 2. Track-to-global interaction
 - Determine collision vertex
 - 3. Global-to-track interaction
 - Whether track origin vertex is centered around collision vertex

- Bipartite Graph Network with Set Transformer (BGN-ST)
- Attention-based algorithm allows the modeling of following information
 - 1. Local track-to-track interaction
 - Determine whether two tracks share same vertex
 - 2. Track-to-global interaction
 - Determine collision vertex
 - 3. Global-to-track interaction
 - Whether track origin vertex is centered around collision vertex
- The loop
 - 1. Initial track definition
 - 2. Weights assigned to each link (Attention)
 - 1. Connection to vertex information
 - 3. Vertex information go through feed-forward NN
 - 4. Update track information

- Main element SEBA block
 - Multiheaded attention
 - Bipartite aggregation
- Track node input vectors (total 37 features)
 - 1. 5 hits (MVTX + INTT)
 - 2. Length of each edge: $L = |\overrightarrow{x_{i+1}} \overrightarrow{x_i}|$
 - 3. Angle between edges
 - 4. Total length of edges
 - 5. Track radius (\propto track p_T)
- Aggregators
 - Vertices

- Main element SEBA block
 - Multiheaded attention
 - Bipartite aggregation
- Track node input vectors (total 37 features)
 - 1. 5 hits (MVTX + INTT)
 - 2. Length of each edge: $L = |\overrightarrow{x_{i+1}} \overrightarrow{x_i}|$
 - 3. Angle between edges
 - 4. Total length of edges
 - 5. Track radius (\propto track p_T)
- Aggregators
 - Vertices
- Model based on PyTorch and PyTorch Geometric
- Initial training on simulated data from MVTX and INTT
 - On GPU NVIDIA Titan RTX, A500, and A6000

1. Triggering on $D^0 \rightarrow \pi K$ (0.1% events)

Note: all Accuracies are calculated on 50% signal/background samples

- 3 MHz collision rate
- 10% HF efficiency (ext. readout)

Set Transformer: arXiv:1810.00825 GarNet: arXiv:1902.07987 PN: arXiv:1902.08570

Graph att. Net.: arXiv:2105.14491

SAGPool: arXiv:1904.08082 GCN: arXiv:1609.02907

- 1 kHz available for additional triggers
- 3000 MB rejection needed

Set Transformer: arXiv:1810.00825 GarNet: arXiv:1902.07987 PN: arXiv:1902.08570 SAGPool: arXiv:1904.08082 GCN: arXiv:1609.02907 Graph att. Net.: arXiv:2105.14491

. Triggeri	ng on D ^o With p	$J \to \pi K$ σ_T predic	(0.1%	events) Without (p_T predi-	Note ction	e: all Accurac	ies are ca	lculated	or
	with LS-radius				out radius	3	0.1% signal/background ratio			
Model	#Parameters	Accuracy	AUC	#Parameter	s Accuracy	AUC	BG Rejection	Efficiency	Purity	
Set Transformer	299,266	86.40%	91.92%	298,882	72.04%	78.92%				
GarNet	$284,\!210$	86.22%	91.81%	284,066	72.59%	79.61%	90%	76%	0.75%	
PN+SAGPool	780,934	86.25%	92.91%	$780,\!678$	69.22%	77.18%				
BGN-ST	363,426	$\mathbf{87.56\%}$	93.22%	$363,\!170$	74.13%	81.81%	99%	23.2%	2.3%	
				-						

signal/background samples

- /Hz collision rate
- % HF efficiency (ext. dout)
- Hz available for ditional triggers
- 00 MB rejection needed

Set Transformer: arXiv:1810.00825 GarNet: arXiv:1902.07987 PN: arXiv:1902.08570 SAGPool: arXiv:1904.08082 GCN: arXiv:1609.02907 Graph att. Net.: arXiv:2105.14491

with LS-radius without radius 0.1% signal/background ratio • 3 MHz collision ratio	ate
Model #Parameters Accuracy AUC #Parameters Accuracy AUC Set Transformer 299 266 86 40% 91 92% 298 882 72 04% 78 92% BG Rejection Efficiency Purity readout	y (ext.
GarNet 284,210 86.22% 91.81% 284,066 72.59% 79.61% 90% 76% 0.75% • 1 kHz available fc	or
PN+SAGPool 780,934 80.23% 92.91% 780,078 69.22% 71.18% 99% 23.2% 2.3% additional triggers BGN-ST 363,426 87.56% 93.22% 363,170 74.13% 81.81% 99% 23.2% 2.3% 3000 MB rejection	} n noodod

Estimating p_T from vertex detectors resulted in 14% accuracy increase!

23x rate increase comparing to random selection!

Set Transformer: arXiv:1810.00825 GarNet: arXiv:1902.07987 PN: arXiv:1902.08570 SAGPool: arXiv:1904.08082 GCN: arXiv:1609.02907 Graph att. Net.: arXiv:2105.14491

1. Trigger	ing on <mark>D</mark>	$^{0} \rightarrow \pi K$	(0.1%	events)		Note	e: all Accurac	ies are ca	lculated o	on 50% signal/background samples
	With p	o_T predic	tion	Without <i>p</i>	Without p_T prediction					
	with	n LS-radius		with	out radius	3	0.1% signa	l/backgroun	d ratio	3 MHz collision rate
Model	#Parameter	s Accuracy	AUC	#Parameters	Accuracy	AUC	BG Rejection	Efficiency	Purity	10% HF efficiency (ext.
Set Transformer	299,266	86.40%	91.92%	298,882	72.04%	78.92%	,			readout)
GarNet	$284,\!210$	86.22%	91.81%	$284,\!066$	72.59%	79.61%	90%	76%	0.75%	1 kHz available for
PN+SAGPool	780,934	86.25%	92.91%	$780,\!678$	69.22%	77.18%				additional triggers
BGN-ST	363,426	$\mathbf{87.56\%}$	93.22%	$363,\!170$	74.13%	81.81%	99%	23.2%	2.3%	
					-				1	3000 IVIB rejection needed

Estimating p_T from vertex detectors resulted in 14% accuracy increase!

23x rate increase comparing to random selection!

- Trigger detection on tracks vs clusters (hit-based)
 - Accuracy: 90.22% (BGN-ST, track construction, model v2) vs 85% (GCN, hit-based)

Set Transformer: arXiv:1810.00825 GarNet: arXiv:1902.07987 PN: arXiv:1902.08570 SAGPool: arXiv:1904.08082 GCN: arXiv:1609.02907 Graph att. Net.: arXiv:2105.14491

1. Triggeri	ing on D	$^{0} \rightarrow \pi K$	(0.1%	events)		Note	e: all Accurac	ies are ca	lculated c	on 50% signal/background sample				
	With <i>j</i>	p_T predic	tion	Without <i>p</i>	Without p_T prediction					_				
	with	h LS-radius		with	out radius		0.1% signa	l/backgroun	d ratio	 3 MHz collision rate 				
Model Set Transformer	#Parameter	rs Accuracy	AUC	#Parameters	Accuracy	AUC	BG Rejection	Efficiency	Purity	10% HF efficiency (ext.				
GarNet	299,200 284,210	86.22%	91.92% 91.81%	298,882 284,066	72.59% 7	79.61%	90%	76%	0.75%	 1 kHz available for 				
${ m PN+SAGPool}\ { m BGN-ST}$	780,934 363,426	86.25% 87.56<u>%</u>	92.91% 93.22%	780,678 363,170	69.22% 7 74.13% 8	77.18% 8 1.81%	99%	23.2%	2.3%	additional triggers				
					-				N	 3000 MB rejection needed 				

Estimating p_T from vertex detectors resulted in 14% accuracy increase!

23x rate increase comparing to random selection!

- Trigger detection on tracks vs clusters (hit-based)
 - Accuracy: 90.22% (BGN-ST, track construction, model v2) vs 85% (GCN, hit-based)

The charm sample is plentiful, the aim is on rare beauty events

Set Transformer: arXiv:1810.00825 GarNet: arXiv:1902.07987 PN: arXiv:1902.08570 SAGPool: arXiv:1904.08082 GCN: arXiv:1609.02907 Graph att. Net.: arXiv:2105.14491

1. Triggeri	ng on D	$^{\circ} \rightarrow \pi K$	(0.1%	events)		Note	e: all Accurac	ies are ca	lculated	on 50% s
	With <i>p</i>	p_T predic	ction	Without <i>p</i>	p_T predic	ction				
	with	LS-radius	3	with	nout radius	3	0.1% signa	l/backgroun	d ratio	• 3 N
Model	#Parameters	s Accuracy	AUC	#Parameters	s Accuracy	AUC	BG Rejection	Efficiency	Purity	• 109
Set Transformer	299,266	86.40%	91.92%	298,882	72.04%	78.92%	De Rejection	,	i arrey	rea
GarNet	$284,\!210$	86.22%	91.81%	284,066	72.59%	79.61%	90%	76%	0.75%	• 1 k
PN+SAGPool	780,934	86.25%	92.91%	$780,\!678$	69.22%	77.18%				ode
BGN-ST	363,426	87.56%	93.22%	363, 170	74.13%	81.81%	99%	23.2%	2.3%	auc
	,				-					• 300

Estimating p_T from vertex detectors resulted in 14% accuracy increase!

23x rate increase comparing to random selection!

- Trigger detection on tracks vs clusters (hit-based)
 - Accuracy: 90.22% (BGN-ST, track construction, model v2) vs 85% (GCN, hit-based)
- Triggering on Beauty decays, (0.05% events) 3.
 - No pileup —
 - Accuracy: 97.38% (BGN-ST, track construction, model v2)
 - Clusters -> Edge Candidate Generation -> Trigger prediction: Accuracy 91.53% (Graph Attention Network, hit-based)
 - Clusters -> Trigger prediction: Accuracy 90.57% (GarNet, hit-based)

ackground samples

- Ilision rate
 - efficiency (ext.
- ailable for triggers
- rejection needed

1972024

Set Transformer: arXiv:1810.00825 GarNet: arXiv:1902.07987 PN: arXiv:1902.08570 SAGPool: arXiv:1904.08082 GCN: arXiv:1609.02907 Graph att. Net.: arXiv:2105.14491

1. I riggeri	ng on D	$^{\circ} \rightarrow \pi K$	(0.1%	events) Note: all Accuracies are calculated or							
	With	v_T predic	ction	Without p	o_T predi-	ction					
	wit	h LS-radius	5	with	out radius	3	0.1% signa	l/background	d ratio	• 3 N	
Model	#Parameter	s Accuracy	AUC	# Parameters	s Accuracy	AUC	BG Rejection	Efficiency	Purity	• 109	
Set Transformer	299,266	86.40%	91.92%	298,882	72.04%	78.92%			,	rea	
GarNet	$284,\!210$	86.22%	91.81%	284,066	72.59%	79.61%	90%	76%	0.75%	• 1 k	
PN+SAGPool	780,934	86.25%	92.91%	$780,\!678$	69.22%	77.18%					
BGN-ST	363,426	87.56%	93.22%	$363,\!170$	74.13%	81.81%	99%	23.2%	2.3%	aut	
					+					• 300	

al/background samples

- collision rate
- F efficiency (ext. Jt)
- available for onal triggers
- MB rejection needed

Estimating p_T from vertex detectors resulted in 14% accuracy increase!

23x rate increase comparing to random selection!

Large accuracy increase reconstructing tracks!

- Trigger detection on tracks vs clusters (hit-based)
 - Accuracy: 90.22% (BGN-ST, track construction, model v2) vs 85% (GCN, hit-based)
- Triggering on **Beauty decays**, (0.05% events) 3.
 - No pileup
 - Accuracy: 97.38% (BGN-ST, track construction, model v2)
 - Clusters -> Edge Candidate Generation -> Trigger prediction: Accuracy 91.53% (Graph Attention Network, hit-based)
 - Clusters -> Trigger prediction: Accuracy 90.57% (GarNet, hit-based)

Set Transformer: arXiv:1810.00825 GarNet: arXiv:1902.07987 PN: arXiv:1902.08570 SAGPool: arXiv:1904.08082 GCN: arXiv:1609.02907 Graph att. Net.: arXiv:2105.14491

	\sim With p	p_T predic	tion	Without <i>p</i>	o_T predi	ction				
	with	LS-radius	•	with	out radius	5	0.1% signa	l/backgroun	d ratio	•
Model Set Transformer	#Parameters	Accuracy	AUC	#Parameters	Accuracy	AUC 78.92%	BG Rejection	Efficiency	Purity	•
GarNet	233,200 284,210	86.22%	91.81%	236,002 284,066	72.59%	79.61%	90%	76%	0.75%	•
PN+SAGPool BGN-ST	780,934 363,426	86.25% 87.56<u>%</u>	92.91% 93.22%	$780,\!678$ $363,\!170$	69.22% 74.13%	77.18% 81.81%	99%	23.2%	2.3%	

nal/background samples

- Iz collision rate
- HF efficiency (ext. out)
- z available for ional triggers

Attention provides slight improvement for clusters

MB rejection needed

Estimating p_T from vertex detectors resulted in 14% accuracy increase!

23x rate increase comparing to random selection!

- Trigger detection on tracks vs clusters (hit-based)
 - Accuracy: 90.22% (BGN-ST, track construction, model v2) vs 85% (GCN, hit-based)
- Triggering on **Beauty decays**, (0.05% events) 3.
 - No pileup
 - Accuracy: 97.38% (BGN-ST, track construction, model v2)
 - Clusters -> Edge Candidate Generation -> Trigger prediction: Accuracy 91.53% (Graph Attention Network, hit-based)
 - Clusters -> Trigger prediction: Accuracy 90.57% (GarNet, hit-based)
 - Pileup (~350 hits + 65 noise)
 - Clusters -> Trigger Prediction: Accuracy 88.52% (GarNet, hit-based

Large accuracy increase reconstructing tracks!

Pileup has a small effect!

Generation of the FPGA IP core – two parallel efforts

1. Team lead by the Georgia Institute of Technology (GIT)

- Direct translation using FlowGNN (ArXiv:2204.13103)
- Goal: 100-200 nodes, 200-500 edges
- 1. Implementation of edge classification
 - 92 nodes, 142 edges
 - Measured Start-to-end latency
 - 150 us @ 130 MHz, edge classification v1
 - 8.82 us @ 285 MHz, edge classification v2
- 2. Implementation of hit-based model
 - Measured Start-to-end latency
 - 9.2 us @ 180 MHz

Utilization (Alveo U280) Utilization (Alveo U280) Utilization (Alveo U280) LUT 194K (14.9%) Utilization (Alveo U280) FF 214K (8.2%) Utilization (Alveo U280) BRAM 406 (20.2%) Utilization (Alveo U280) DSP 488 (5.4%) 50

Note: target board FLX-712 is half the size of Alveo

1k graphs

Detailed latency breakdown and parallelism exploration ongoing

The effects of FlowGNN parameters

Close discussion between model developers and FPGA engineers

Generation of the FPGA IP core – two parallel efforts

- 2. Team lead by the Massachusetts Institute of Technology (MIT) and Fermilab (FNAL)
 - Based on High Level Synthesis for Machine Learning (hls4ml), a generalized python framework for machine learning inference in FPGAs
- Unfortunately, PyTorch Geometric is currently not supported in hls4ml
 - Used in our attention-based model (Estimated 3-4 us latency for edge classification v1)
 - Would require extensive customization of current hls4ml -> against its philosophy
 - Developers are working on PyTorch Geometric support and will be released in 2025!
- We moved focus for hit-based beauty model that is based on GarNet which is currently supported in hls4ml

LOS Alamos

arXiv:2112.02048

arXiv:2103.05579

Realizing the firmware

LOS Alamos

Summary and Outlook

- The model has been developed and tested on HF event simulation for sPHENIX
 - provides good precision while analyzing two detector hemispheres independently
 - Current focus on further improvement in model ability to handle pileup event accuracy and latency studies
- IP core (FPGA code) generation by two teams FlowGNN and hls4ml
 - Huge progress and improvement of the utilization and latency
 - Iteration with model developers
- All components in the FPGA pipeline are developed
 - Final push to finalize development of each FPGA component putting them together on a single FPGA
 - Very challenging in meeting the utilization and timing constrains
 - FLX-712 boards to serve as AI engine installed in sPHENIX counting house
- A new FLX-182 board arrived to BNL which will be the base for EIC development
 - Probe the possibility of using off-the-shelf card (Alveo etc.)

Thank you for your attention

Artificial intelligence and machine learning have the potential to revolutionize our approach collecting, reconstructing and understanding data, and thereby maximizing the discovery potential in the new era of nuclear physics experiments.

MVTX and INTT

MVTX - Active area ~1685 cm²

- Based on ALICE ITS2 ALPIDE chips, with ATLAS FELIX backend
 - Monolithic Active Pixel Sensors
 - Very fine pitch (27 μm x 29 μm)
 - Event Time resolution ~ 5 µs
 - 3 layers, 48 staves total, 9 chips per stave ~ 230M total channels

INTT

- Silicon Strip Detector
 - Hamamatsu silicon modules
 - Pitch 78 µm x 16 (or 20) mm
 - Excellent Time resolution ~100 ns (100 ns is the RHIC BC time)

TPC

INTT

- 2 layers, 56 ladders total, 360k channels

The timing and trigger distribution

- The Global Level 1 Trigger (GL1) and the machine clock is distributed via Granule Timing Module (GTM)
 - GL1 trigger is used by calorimeters and the TPC
 - GL1 transmits clock and trigger to the vGTM, which then transmits it to the FEE
 - vGTM is the adapter to a given detector
 - GL1 is maintaining the BUSY received from vGTM

The DAQ–AI Data Flow

- Motivation to use FELIX board:
 - To reuse the PCIe implementation (16-lane Gen-3) and software tools provided by the FELIX developers
 - on-board FPGA is a Kintex Ultrascale XCKU115FLVF1924-2E
- The decision signal of heavy flavor event from the AI-Engine will be sent out via the LEMO connectors to the sPHENIX GTM/GL1 system to initiate the TPC readout in the triggered mode
 Al engine
 - GPU based feed-back system for the beamspot monitoring

The latency constrains

- The TPC buffers can hold up to 30 µs of data
 - The goal of this project is to aim for 10 µs collision-trigger latency to capture the TPC stream

- The latency breakdown
 - 1. MVTX readout window $5 \mu s$ not fixed interaction-readout latency!
 - 2. IR -> Counting house $\sim 0.3 \ \mu s$ (81 m fibres)
 - 3. FELIX -> AI data forward, decoder buffers ~ $0.6 \ \mu s$ (@240 MHz)
 - 4. Clusterizer + Trigger decision (currently 9.2 µs for hit-based model!)
 - 5. AI -> GTM -> TPC FELIX (negligible, all three sits in Counting house)

Motivation – The challenges

- Real-time selection of rare decays of HF particles
 - requires continuous monitoring and adjustment of the
 - beam trajectory ("beam spot") in time periods of seconds to hours, the position and shape can change (this will affect the HF the topology)
 - detector alignment, conditions and anomalies
- Adapt AI to continuous learning and changing conditions -> adaptive learning
 - Development of real-time autonomous closed loop adaptive learning system

Predicted timeline

	2021	2022	2023		2024			
•	Project funded by DOE FOA Initial simulations constructed First data for algorithm training	 MVTX & INTT SRO Fast tracking & trigger algorithms in place Initial FPGA bitstream synthesis GPU feedback machine R&D 	 Refine interface between system and detectors Improve algorithms with latest data stream and commissioning info Pre- commissioning 	•	Deploy device at sPHENIX pp/pA run	•	Take advantage of new technology if required	Deploy device at EIC
-								

From sPHENIX to ePIC: Streaming + AI/ML DAQ

