Accelerator design and R&D efforts for Super Tau-Charm Facility

Jingyu Tang On behalf of the STCF accelerator team ICHEP 2024, July 17-24, 2024, Prague

Topics

- Design goals of STCF
- Current accelerator design scheme and key parameters
- Key challenges in accelerator physics and technologies
- Organization of the STCF accelerator study
- Summary

High-lumi e+/e- circular colliders

STCF Design Goals

- Core design goal:
 - CoM energy: 2-7 GeV
 - Luminosity: > 5×10^{34} cm⁻²s⁻¹ @4GeV
 - Upgrading potential: polarized beam, higher luminosity
- Accelerator structure
 - Double-ring collider:
 low emittance, high current,
 large Piwinski angle
 - Injector: full-energy linac, e+ damping ring or accumulator, beam transport lines

Current deign scheme and main parameters

Injector:

- Variable energy: 1-3.5 GeV
- High beam quality (emittance, energy spread)
- Two different CR injection: offaxis and swap-out
- Damping ring or accumulator ring for positrons @1 GeV
- Total length: ~400 m (+100 m beam transp.)

Parameters	Value		Unit
E-gun type	Photo	Thermal	
	/Thermal	/Thermal	
Injection e- bunch charge	1.5	8.5	nC
Injection e+ bunch charge	1.5	8.5	
Injection energy	1.0-3.5	1.0-3.5	GeV
Optimal energy	2.0	2.0	GeV
MW frequency	2998.2	2998.2	MHz
Injection emittance (Geo, rms)	≤6	≤30	nm-rad
Injection energy spread (rms)	≤0.1	≤0.3	%
Injection bunch length (rms)	<7		mm
Injection frequency e-	30	30	Hz
Injection frequency e+	30	30	Hz
e+ DR injection emittance	≤1400	-	nm-rad
e+ DR extraction emittance	≤11	-	nm-rad
e+ DR RF frequency	499.7	-	MHz
e+ DR bunch numbers	5	-	
e+AR injection charge	-	2.5	nC
e+AR injection frequency	-	120	Hz
e+AR injection emittance	-	≤1400	nm-rad
e+AR extraction emittance	-	≤30	nm-rad

	Parameters	Units	STCF
Collider rings:	Optimal beam energy, E	GeV	2
<u> </u>	Circumference, C	m	871.76
 Injection energy: 1-3.5 GeV 	Crossing angle, 2θ	mrad	60
Optimal operative 2 CoV	Revolution period, T	μs	2.908
– Optimal energy. 2 Gev	Horizontal emittance, $\varepsilon_x/\varepsilon_y$	nm	6.857/0.034
 Two injection schemes: off- 	Coupling, k		0.50%
	Beta functions at IP, β_x/β_y	mm	40/0.6
axis, swap-out	Beam size at IP, σ_x/σ_y	μm	16.56/0.143
	Betatron tune, v_x / v_y		32.55/29.57
DW1 LSS1 LSS2	Momentum compaction factor, α_p	10 ⁻⁴	12.322
	Energy spread, σ_e	10 ⁻⁴	8.986
	Beam current, I	А	2
ARC1(120°) 2-fold lattice ARC2(120°)	Number of bunches, n_b		726
	Particles per bunch, N_b	10 ¹⁰	5.00
Re LSS4 LSS3	Single-bunch charge	nC	8.01
12. Reve	Energy loss per turn, U_0	keV	406.8
-102 -102 -10 -10 -10 10 101	Damping time, $ au_x/ au_y/ au_z$	ms	28.4/28.6/14.4
Layout of STCF	RF frequency, f_{RF}	MHz	499.333
175-	Harmonic number, h		1452
DW1 DW3	RF voltage, V_{RF}	MV	1.8
¹³⁵ ARC1(30°) ARC4(30°)	Synchrotron tune, v_z		0.0158
SS1 SS3	Bunch length, σ_z	mm	9.72
	RF bucket height, δ_{RF}	%	1.47
• ARC2(120°) ARC3(120°)	Piwinski angle, ϕ_{pwi}	rad	17.61
³⁵ SS2 DW2 (long)	Beam-beam parameter, ξ_x/ξ_y		0.0027/0.082
	Hour-glass factor, F_h	2 4	0.87
~ fut	Luminosity, L	cm ⁻² s ⁻¹	1.0×10^{35}

Key challenges in accelerator physics and technologies

Key challenges on AP and technologies

- Design goal: Super-high lumi., high-quality (high-current, low emittance) e+/e- beams collision (extremely low β^*), stable operation
- Great challenges: IR strong nonlinearity and collective effects; IR superconducting magnets

Key challenges on AP and technologies

No	Key design or tech	Prio.	Comments
1	Collider ring AP design	A+	Espec. IR, key to realize high-lumi
2	IR SC magnets	A+	Complex structure, high-field, tight space, less exp.
3	Collider ring RF	A+	High-power, deep-damped HOM, less exp.
4	Injector AP design	А	Prov. high-qual. beams to CR, 2 injection schemes
5	MDI	А	Very tight space and complex mech. (acc. and det.)
6	Collider beam instrum.	А	High-prec. and fast bunch meas., fast feedbacks
7	Collider ring injection	А	ns-scale kickers for bunch swap-out injection
8	Positron source	А	Low e- energy to generate e+ beam
9	Collider ring vacuum	A-	High-current circ. beams, ultra-high vacuum for IR
10	Electron source	A-	High-bunch charge photocathode e-gun
11	Linac microwave	A-	Large-aper. S-band acc. struct., less exp, LLRF
12	Linac power source	A-	High-power solid-state modulator

Key challenges (1) – CR AP design

- A new-generation e+/e- collider
 - How to attain two-order lumi. gain over the last-generation collider (BEPC-II)?
- IR physics design
 - The key and challenge for STCF accelerator
 - New collision scheme: beam param (I_b , ε_x ; nm spot at IP), crossing angle, correlation with the B-B effect [Luminosity need]

- Special optics: Final Focus + Crab Waist (Telescope-Mini β, dispersion, phase advance) [Complexity]
- Strong nonlinearity: Local CC for extreme-low β , fringe-field, crab sextupoles \rightarrow very small DA and MA [very short beam lifetime]
- Complex MDI: SC magnets, vacuum, cryostat, beam monitors, interface with detector [Iterations]

Take advantage of a new machine, lessons from SuperKEKB better design

Other key problems in CR AP design

Beam-Beam effects

- 3rd-Gen colliders pushing ξ_y to 0.1 or higher (Limiting ξ_x)
- Large Piwinski + Crab-Waist: strong correlation with transverse motion
- Mutual influencing with frequent injections

Collective effects

- Factors: high current, low emittance, high impedance
- Intra-beam scattering: transverse IBS, Touschek (very short lifetime)
- Impedance: multiple strong collective instabilities, in particular the coupling bunch instability

Beam injection

- Touschek lifetime very short (<300 s), frequent injections
- At different beam energies: damping time by damping wigglers
- Injection schemes: off-axis injection easier, emittance blow-up and background; bunch swap-out injection

 more powerful injector
- Beam collimation
 - Very high beam loss rate: background and radiation protection
 - Collimation efficiency and impedance: more complex collimation design (e.g. nonlinear collimation)

Key challenges (2) – Injector AP design

- Injector providing e+/e- beams to CR
 - Quality: energy spread, bunch charge, emittance, stability
 - High frequency injections (~30 Hz)
 - Large energy range: 1-3.5 GeV, ε <20 nm
 - High current: 1.5 nC (off-axis); 8-10 nC (swap)

➔ Better design: A new machine, utilizing design and technology from FEL and 4G light source linacs.

Key challenges (3) – IR SC magnets

• IR SC magnets

- Technically very challenging, very few labs have experience
- Very tight space, complex and combined coils
- 3rd-Gen e+/e- colliders even more difficult: twin-aperture, higher field gradient (~50 T/m)
- In China: IHEP built the first IR magnet for BEPC-II; some experience in other SC magnets
- STCF R&D: developing prototypes by steps, different technologies under consider. (BEPCII serpentine, CCT√, cos2θ/DCT)

IHEP BEPCII-U (Serpentine)

Herstein B Herstein Herstein B Herstein B Herstein B Her

A CCT type prototype just started (60 mrad, 54 mm separation, 50 T/m)

Key challenges (4) – Ring RF

• RF for Collider rings

- High synchrotron radiation (2 Amperes): RF power and couplers
- HOM deep-damped: instabilities
- Large energy range (1-3.5 GeV): high V_{RF}
- Beam loading: at bunch swap-out injection
- Stability: more powerful LLRF
- Selected for R&D: TM020 RT cavity, 500 MHz; 200 kW coupler

RF parameters	
Working mode	TM020
Frequency [MHz]	499.7
R/Q [Ω]	84.4
Unloaded quality factor	62828
$E_{\rm p}/E_{\rm acc}$	1.92
$B_{\rm p}/E_{\rm acc} [{\rm mA/V}]$	2.64
Vcav (inpot: 100 kW) [kV]	728.2

Key challenges (5) – Beam instrumentation

• Requirements for beam instrum.

- CR precise bunch meas.: bunch-by-bunch 3D meas., trans. position res. <5 μ m, long. phase res. <0.2 ps
- CR B-by-B fast feedback: coupled bunch inst.
- IP: orbit feedback
- Injector: bunch length and charge meas.
- R&D efforts
 - Bunch 3D meas.: probe, signal treat, electronics, S/N, integration
 - B-by-B fast feedback: raising bandwidth, avoiding interference to single bunch
 - Injector bunch length and charge meas.: cavity-based
 - Prototypes: beam tests in different machines

Integrated board for B-by-B 3D meas.

Cavity-based: bunch length, charge and profile meas.

Electron-positron beams test platform

- Test platform for supporting several injector R&Ds
 - Electron source: mainly photocathode (also thermal e-gun)
 - High-power solid-state modulator
 - Positron target
 - Magnetic horn
 - Large-aperture S-band acceleration tube
 - Beam diagnostic devices
- Basic requirements
 - Photocathode electron source
 - 100-MeV e- linac
 - Positron target and magnetic horn
 - 100-MeV e+ linac
 - Beam properties measurements, beam dumps

e-linac: 2* 6-m sections; e+ linac: 3 large-aper. accel. tubes

Located in the accelerator test hall of HALF (Hefei Advanced Light Facility under construction)

From prelim. study phase to R&D phase

- Preliminary study phase (from 2018 to mid 2023)
 - Very limited manpower (a dozen, mostly: small-portion part-time, students, retired consultants): preliminary conceptual design on the STCF accelerator
 - Lacking experience in colliders
 - Supporting the STCF study project
- Key R&D phase (since August 2023)
 - National Synchrotron Radiation Laboratory (NSRL) fully engaged in, as the co-supporter of the STCF project
 - NSRL is focusing on the constr. of HALF (a 4G synchrotron light source, 2023.5 to 2028.9), still limited manpower
 - Domestic collaborations: 8 institutions, contributing to half of current manpower
 - About 90 persons, half are students, majority without experience in colliders

SUMMARY

- STCF accelerator goal is very challenging
- Provincial and national financial resources to support the design and key technological R&Ds, aiming for construction in late 2020
- STCF is a national project, attracts domestic institutions in the study
- It is very important to collaborate with international labs, in particular, KEK and BINP

Thanks for attention!