

Atomic Layer deposited thin coatings for Secondary Electron Emission yield optimization

Mathieu LAFARIE

PhD student 2nd year ONERA/DPHY/CSE CEA/DRF/IRFU/DAMC/LIDC2

Yasmine KALBOUSSI

PhD 2023 Researcher CEA/DRF/IRFU/DAMC/LIDC2

 Thesis director: Mohamed BELHAJ ONERA/DPHY/CSE

 Thomas PROSLIER CEA/DRF/IRFU/DACM/LIDC2

 ONERA Supervisor : Christophe Inguibert ONERA/DPHY/CSE

 Support : ONERA/CEA

The problems induced by electronic emission yield

Electron – matter interactions

Electron – matter interactions

Peter W. Hawkes, John C. H. Spence, Springer Handbook of Microscopy, Springer Nature Switzerland AG 2019 **SEEY** = secondary electron emission yield => number of secondary electrons emitted by a surface for each incident electron of a given energy

TEEY = Total electron emission yield => number of secondary and backscattered electrons emitted by a surface for each incident electron of a given energy.

Secondary electron= low-energy electron (<50 eV) resulting from the inelastic interaction between a primary or backscattered electron and an electron in the electron cloud of one or more atoms Backscattered electron= high-energy electron (>50 eV) resulting from the elastic interaction between a primary electron and the nucleus of an atom

The challenge of electronic emission yield

Atomic Layer Deposition : principes

Atomic Layer Deposition (ALD) is a chemical vapor deposition technique based on sequential self-saturating gas-surface reactions

ALD cycle reaction diagram

cea

ONERA

THE FRENCH AEROSPACE LAB

RÉPUBLIQUE

FRANCAISE

Advantages

ICHEP 2024

Atomic Layer deposited thin coatings for Secondary Electron Emission yield optimization

Disadvantages

Al₂O₃ / TiN coatings for Multipacting mitigation

Yasmine KALBOUSSI Nano hetero-structures for improving performances of Superconductors under high fields

Materials Science [cond-mat.mtrl-sci], Université Paris-Saclay, 2023

ICHEP 2024

Niobium native oxyde supression

- Niobium oxidizes naturally in air
- Oxidized niobium contains impurities (two level systems) that absorb a part of the RF power
 - Leads to a diminution of quality factor
 - Limits applicable RF intensity in cavities
 - Also problematic for Q-bits application
 - A possible solution is to coat the oxydized niobium with a protective, low TEEY layer and then to thermal treat the coated cavity to reduced the niobium oxydes with a controled

RF test on Al₂O₃ coated Niobium cavities

Effects of a 10nm Al₂O₃ coating on the cavity surface :

- Improvement in quality factor for high fields
- Multipacting barrier at 18 MV.m⁻¹

RF test on 5nm TiN / Al₂O₃ coated Niobium cavities

Effects of a 5nm TiN coating:

- Reduction of the TEEY on Nb samples
- Significant reduction of the quality factor on cavities

An optimum TiN thickness must be found to reduce TEEY without increasing surface resistance.

Effect of 40 ALD TiN cycles on Al₂O₃

Effects of a 1,6nm TiN coating on the cavity surface :

- No Multipacting barrier
- Acceptable reduction of the quality factor for some particle accelerators.

Under review J. of applied physics

ICHEP 2024

Atomic Layer deposited thin coatings for Secondary Electron Emission yield optimization

Can TEEY and electrical conductivity be

modulated according to chemical

composition and coating structure?

Multilayered ZnO/MgO coatings for electronic emission yield and electrical conductivity optimisation

Multilayred ZnMgO coatings : introduction

- ZnO :
 - SEEY = 2

Xiangping Zhu et al., Theoretical and experimental investigation of secondary electron emission characteristics of ALD-ZnO conductive films, J. Appl. Phys. 128, 065102 (2020)

- Conductivity = 7,1 10³ Ω⁻¹.m⁻¹

W.J. Jeong et al., Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell, Thin Solid Films 506 – 507 (2006) 180 – 183

- MgO :
 - SEEY = 6,2

J. Guo, et al., Theoretical and experimental investigation of secondary electron emission characteristics of MgO coating produced by atomic layer deposition ,Ceramics International 46 (2020) 8352–8357

- Conductivity = $10^{-15} \Omega^{-1}.m^{-1}$

H. KATHREIN and F. FREUN, *Electrical conductivity of magnesium oxide single crystal below 1200 K*, J. Phys. Chem. Solids Vol 44. No. 3. pp 177-186. 1983

- Common properties :
 - Metallic oxydes
 - Chemically stable
 - good transparency in the visible range
 - Similar Growth Per Cycle

Multilayered ZnMgO coatings : conductivity

The chemical composition and stacking structure of materials can modulate the coating conductivity

13 Secondary Electron Emission yield optimization

Multilayred ZnMgO coatings : TEEY

TiC : Electrical conductivity and TEEY

FRANCAISE

THE FRENCH AEROSPACE LAB

Conclusion

- Multilayer coatings based on ZnO and MgO show that electrical conductivity is tunable depending on chemical composition and structure; initial measurements after removal of adventitious carbon seem to indicate a similar tendency for TEEY
- By choosing TiC and MgF₂ respectivly to replace ZnO and MgO as a new couple of materials with a higher gradient of electrical conductivity and TEEY, it should be possible to produce a new coating, with an extended property range that will be interesting for orbiting satellite and RF components applications

Atomic Layer Deposition : Alumina synthesis

