Energy Recovery Linacs (ERL) – European R&D Roadmap the R&D program towards ERL-based particle colliders

Jorgen D'Hondt Vrije Universiteit Brussel (stepping in for Andrew Hutton, JLab)

on behalf of the ERL Coordination Panel European Accelerator R&D Roadmap

fwo

ICHEP 2024, Prague, July 2024

Accelerator R&D Roadmap prioritizes progress on <u>these technologies</u> to enable future particle accelerators in a timely, affordable and sustainable way

CERN Yellow Rep. Monogr. 1 (2022) 1-270, https://cds.cern.ch/record/2800190?ln=en

Accelerator R&D Roadmap prioritizes progress on <u>these technologies</u> to enable future particle accelerators in a timely, affordable and sustainable way

CERN Yellow Rep. Monogr. 1 (2022) 1-270, https://cds.cern.ch/record/2800190?ln=en

Accelerator R&D objectives

HIGHER-ORDER MODE DAMPING

efficient HOM extraction w/o increasing cryoload

HIGH-TEMPERATURE SC TECHNOLOGY towards 4.2 K operation

HIGH-Q₀ & GRADIENT

FRT & RF power source efficient RF operation

RF POWER GENERATION

The Development of Energy-Recovery Linacs arXiv:2207.02095, 237 pages, 5 July 2022

Accelerator R&D objectives

ERL to enable high-power beams that would otherwise require one or more nuclear power plants

Future ERL-based Colliders H, HH, ep/eA, muons, ... bERLinPro & PERLE essential accelerator R&D labs with ambitions overlapping with those of the particle physics community towards high energy & high power

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

PERLE – Powerful Energy Recovery Linac for Experiments

PERLE @ IJCLab (Orsay/Paris, France)

 growing international collaboration with impactful in-kind contributions
 all ERL aspects to demonstrate readiness
 for e⁺e⁻ and ep/eA HEP collider applications

First stage: one-turn by 2028

(pending some budget requests and additional in-kind contributions)

on SRF technology (3-turns, 500 MeV, 20 mA)

photo-cathode

multi-turn ERL based

1st cryomodule developed in the iSAS project

electron DC-gun

HV tanks

implementation started

CDR: J.Phys.G 45 (2018) 6, 065003

bERLinPro – Berlin Energy Recovery Linac Project

bERLinPro @ HZB (Berlin, Germany)

 generic accelerator R&D with several aspects as stepping stones towards HEP applications
 potential for developing and testing novel energy-saving technologies

commissioning for beam in 2024

10-mA SRF gun + merger + recirculation + dump + proof-of-principle UED exp (booster module is funded)

The current installation will allow high-power beam studies of the injector (up to 100 mA in long-pulse mode).

first beam from injector end of 2024

bERLinPro – Berlin Energy Recovery Linac Project

Potential impact of ERL technology

for particle physics colliders

demonstrate (multi-turn) high-power ERL 2020'ies iSAS PERLE **b**ERLinPro

high-power ERL demonstrated See dedicated presentations at ICHEP 2024 on the iSAS project (Jorgen D'Hondt) and on PERLE and bERLinPro (Walid Kaabi)

Potential impact of ERL technology

for particle physics colliders

demonstrate

(multi-turn) high-power ERL

enables the ultimate upgrades of the LHC/FCC programmes (ep collisions)

2070'ies ERL FCC-ehutzebland

euse ERI

high-power ERL demonstrated

2030'ies EIC

ERL application

electron cooling

2030-2040'ies

m R

high-power ERL e⁻ beam in collision (ep/eA @ LHC programme)

See dedicated presentation at ICHEP 2024 on the LHeC/FCC-eh programmes (Jorgen D'Hondt)

Integrate Luminosity per Energy [ab⁻¹ TWh⁻¹]

This plot suggests that with an ERL version of a Higgs Factory one might reach

x10 more H's

or

x10 less electricity costs

NOTE: several additional challenges identified to realise these ERL-based Higgs Factories (hence the large uncertainty band in the plot)

- Two 11 to 90 GeV SRF linacs in 4 pass configuration
- 1/3rd of power consumption as compared to circular collider
- CM Energy reach of 600 GeV in 100 km circumference tunnel
- Damping rings for emittance reduction and recycling of beams

 Maximum Power of 300 MW per beam @ 120 GeV and 2.47 mA

This plot <u>suggests</u> that with an ERL version of a Higgs Factory one might reach

x10 more H's

or

x10 less electricity costs

NOTE: several additional challenges identified to realise these ERL-based Higgs Factories (hence the large uncertainty band in the plot)

This plot suggests that with an ERL version of a Higgs Factory one might reach

x10 more H's

or

x10 less electricity costs

NOTE: several additional challenges identified to realise these ERL-based Higgs Factories (hence the large uncertainty band in the plot)

Integrate Luminosity per Energy [ab⁻¹ TWh⁻¹]

- Flat beams are cooled in damping rings
- Beams are accelerated <u>on-axis</u> in SRF linacs and collide in one of the detectors
- After collision, beams are decelerated in the opposite linacs and periodically separated <u>off-axis</u>
- Natural polarization of both beams builds up in the damping rings
- Depolarization during the trip between damping rings is minuscular, hence providing a high degree of polarization at collision
- With top-off to replace burned particles (1 nA level), the beam lifetime is about 10 hours

- ERLC consists of two parallel superconducting linacs connected to each other with RF-couplers, so that the fields are equal at any time
 - One line is for acceleration, the other for deceleration.
- Damping is provided by wigglers (no damping rings) at the "return" energy about E~5 GeV
- The energy loss per turn δ E/E~1/100
- Damping is needed to reduce the energy spread arising from collision of beams

CERC: ERL-based circular 100km e⁺e⁻ Higgs Factory

This plot suggests that with an ERL version of a Higgs Factory one might reach

Refs for CERC: PLB 804 (2020) 135394 and arXiv:2203.07358

³⁴ Ref for ReLiC: arXiv:2203.06476

Refs for CERC: PLB 804 (2020) 135394 and arXiv:2203.07358

Ref for ReLiC: arXiv:2203.06476 ³⁵

CERC version in the LEP/LHC tunnel for CoM energy of 240 GeV

- Extrapolated from the CERC (100 km) version
- Splitting the SRF linac in seven parts filling 545 m of straight sections with seven 8.63 GeV SRF linacs
- Section eight is available for <u>one detector</u>, where the beam passes only at top energy
 - beams with intermediate energy by-pass the IR
- Two-pass ERL
- Luminosity is proportional to SR power 30 MW
 SR power loss corresponds to 4.5 x 10³⁴ cm⁻² sec⁻¹

V. Litvinenko, "Future High Energy High Luminosity Polarized e⁺e⁻ Colliders using Recycling Energy Recovery Linacs" at EPS-HEPP 2023, https://indico.desy.de/event/34916/contributions/147045/attachments/84336/111710/EPS-HEP_Litvinenko.pdf

ERC@CERN in the LEP/LHC tunnel for CoM energy of 250 GeV

- Two-pass ERL version for <u>three detectors</u>
- Including two MAX IV like 3 GeV damping rings
- Power calculations based on (requires aggressive R&D)
 - 4.5 K cavities with 31.33 MV/m gradient (70% filling factor)
 - same cavities for e^- and e^+ ($Q_0 = 10^{10}$ and 10 mA)
 - *duty factor 1/10 (5 Hz operation & 20 ms pulse length)*
 - ε_x (norm) = 0.42 mm-mrad & ε_y (norm) 4.2 μ m-mrad
 - 8 MHz bunch frequency during RF pulse (2 x 10¹⁰ part/bunch)
- RF \oplus Cryo power = 13.6 MW + 43.7 MW = 57 MW
 - total synchrotron energy lost in 2 turns is 6.83 GeV, compared to 7 GeV per turn for a non-ERL version

New work done by A. Hutton; interesting baseline for more detailed simulations to verify for example the beam disruption factor

Potential impact of EPt technology

enables t

upgra

for particle physics colliders

demonstrate_

An electron-positron Higgs factory is the highest-priority next collider.

European Strategy for Particle Physics 2020

An ERL-route towards an e⁺e⁻ Higgs Factory

potentially enabling additional (ep/eA) and more (e⁺e⁻) physics with less impact on the environment and less power requirements with a timely and affordable realisation (ep/eA)

the next major e⁺e⁻ colliders

aemonstrated

electron cooling

tachnology Potential impact of E

for particle physics colliders

An electron-positron Higgs factory is the highest-priority next collider.

European Strategy for Particle Physics 2020

enables t upgra

demonstrate_

An ERL-route towards an e⁺e⁻ Higgs Factory

potentially enabling additional (ep/eA) and more (e^+e^-) physics with less impact on the environment and less power requirements with a timely and affordable realisation (ep/eA)

requires additional support to complete the R&D program (e.g. PERLE, bERLinPro, iSAS) requires enhanced interest and resources for design efforts of ERL-based colliders

Not without challenges!

aces the performance of the next major e⁺e⁻ colliders

gemonstrateo

electron cooling

Future particle physics colliders with Energy Recovery Linacs

- The engine of our curiosity-driven exploration with particle physics is society's appreciation for the portfolio of technological innovations and knowledge transfer that we continue to realize: <u>power requirements are on the minds now</u>
- To achieve the best physics for the least power, energy savings and energy recovery is an ambition expressed in the European Strategy for Particle Physics
- ERL is an <u>enabling technology for our most prominent future ep/eA and e⁺e⁻</u> <u>colliders</u>, delivering breakthrough performances on an interesting timeline

Future particle physics colliders with Energy Recovery Linacs

- The engine of our curiosity-driven exploration with particle physics is society's appreciation for the portfolio of technological innovations and knowledge transfer that we continue to realize: <u>power requirements are on the minds now</u>
- To achieve the best physics for the least power, energy savings and energy recovery is an ambition expressed in the European Strategy for Particle Physics
- ERL is an <u>enabling technology for our most prominent future ep/eA and e⁺e⁻</u> <u>colliders</u>, delivering breakthrough performances on an interesting timeline

The potential impact of ERL on the performance of particle colliders is so appealing that we must foster this R&D path

ERL Panel website: <u>https://indico.ijclab.in2p3.fr/event/9548/</u> (incl. registration to mailing list)

Thank you for your attention! Jorgen.DHondt@vub.be

Organising the European R&D for ERL in HEP

strengthen collaboration across the field to reach the HEP-related R&D objectives together

RI: Research Infrastructure

