

Kyo Shibata (KEK Accel. Lab. & SOKENDAI)

On behalf of the SuperKEKB and Belle II Commissioning Group

Inter-University Research Institute Corporation High Energy Accelerator Research Organization (KEK) 大学共同利用機関法人高エネルギー加速器研究機構 (KEK)

- SuperKEKB
- Major Upgrades during LS1
- Highlight from 2024ab run
 - Sudden Beam Loss
 - Non-linear collimation scheme
 - Injection
 - Luminosity
- Summary

SuperKEKB

• SuperKEKB;

- An upgrade of KEKB B-factory (KEKB).
- High-luminosity electron-positron collider to seek out new physics hidden in subatomic particles.
- Main ring (MR) is composed of Low Energy Ring (LER); 4.0 GeV Positron, 3.6 A High Energy Ring (HER); 7.0 GeV electron, 2.6 A
- Target Luminosity : ~6×10³⁵ cm⁻²·s⁻¹
 - \sim ~30 times maximum luminosity of KEKB
 - \checkmark Higher beam current than those of KEKB (×2)
 - ^{*} β_y^{*} squeezing and smaller emittance for nanobeam collision scheme
 - ✓ The world's first practical application of the nano-beam scheme

18th July 2024

recorded

delivered

1/1

2020

7/1

1/1

2021

7/1

1/1

2022

400

200

1/1

2019

7/1

- 2024/Jan.-: Run2 •
 - 2024ab (2024/Jan.-July)
 - 155 days (3696 hours)
 - Start-up after a long shutdown •
 - Aiming to make new world luminosity record •
 - 2024c will start on Oct./9th. (~2 months)

7/1

128 fb⁻

1/1

2023

7/1

1/1

7/1

531 fb

1/1

- current)
- ✓ Squeezing β_y^*

- Non-linear collimation (NLC) system was installed in LER Oho straight section.
 - Impedance of NLC is much lower than that of conventional collimator due to its large aperture.
 - NLC can relax TMCI bunch current limit.
 - Oho straight section is the location where the optics satisfies the requirements for NLC.
 - A part of wiggler magnets was removed to make space for NLC.
 - New skew sextupole magnets and beam pipes in them were fabricated.
 - New power supplies, cabling works and new radiation shields were also required.

 $\Delta p_{\rm y} = (K_{\rm s}/2)(y^2 - x^2)$

 $\Delta p_x = K_s xy$

Non-linear collimation scheme (conceptual diagram)

Quad.

Skew

Sext.

First sextupole magnet kicks

unwanted beam particles.

NLC system construction

18th July 2024

HER injection point upgrade

ICHEP 2024@PRAGUE

πμ

- Required upgrade to improve HER injection efficiency (what we have learned from beam operation until 2022b);
 - Enlargement of the horizontal aperture of beam pipe
 - Replacement of beam pipes at injection point with new one with larger aperture
 - Reduction of amplitude of horizontal oscillation of injected beam
 - Replacement of injection septum magnet with new one with improved magnetic field

Septum magnet was replaced with new one.

New beam pipes with larger aperture

2024ab run overview

- Jan./29 Feb./20
 - Vacuum scrubbing, Machine tuning, Machine study
- Feb./20 July/1
 - Physics run, Machine tuning, Machine study
 - Struggling with Sudden Beam Loss, poor injection efficiency, low machine stability.
 - Many beam abort caused by SBL and injection beam
 - May/1-12 : Off resonance operation
 - Peak luminosity : 4.47×10³⁴ cm⁻²s⁻¹
 - Integrated luminosity (2024ab) : 103 fb⁻¹
 - Max. Int. lumi. per day : 2.0 fb⁻¹/day
 - Total integrated luminosity : 527 fb⁻¹
 - Maximum beam current : HER/LER = 1210/1539 mA
 - β_y^* -squeezing (Vertical β -function at IP) : ~0.9 mm
 - Mostly operated with β_y^* = 1.0 mm
 - Others :
 - Fixed number of bunches mostly at 2346, finally at 2249
 - Crab waist ratio : HER/LER = 40/80 -> 60/80 %
 - Chromatic X-Y coupling correction by rotatable sextupole magnets.

Sudden Beam Loss (SBL) #1

• Still struggling with SBL after LS1

- Part of the beam is suddenly lost within a few turns.
- Uncontrollable crazy beam can damage the collimators and Belle II detector.
 - It is difficult to maintain the MR in good working condition with damaged collimators.
 - SBL also can result in QCS quench.
 - Beam abort request is issued by beam loss monitors.
- SBL is an obstacle to maintain stable machine operation and increase beam current.
- SBL occurs more frequently in LER than in HER.
- The cause of SBL has been unknow before 2024ab run.
 - New diagnostics tools (beam loss monitors, acoustic sensors, bunch oscillation recorders) were installed during LS1.
- Beam aborts with SBL and QCS quench damaged Belle II detector (PXD).
 - On 22nd/April and 6th/May
 - 10 % of PXD became unusable by these issues.
 - PXD HV was turned off to prevent further damage.
 - LER collimator D02V1 jaws were also damaged.
 - However, not large impact on beam operation fortunately.

Sudden Beam Loss (SBL) #2

g

Nikko w<u>igg</u>ler

UNIT OF

- Identifying the cause of SBL was the most important and urgent task in 2024ab run.
 - Belle II and SuperKEKB had formed a strong collaborative team to address the SBL.
 - A great deal of time has been spent on the machine study on the SBL.
- Many findings were made during 2024ab run
 - SBL happens
 - with a single beam as well as in collision.
 - even at lower bunch currents.
 - at β_y^* = 3mm, as well (not only at β_y^* = 1mm,).
 - Vertical beam size increases when SBL occurs.
 - In most cases, the pressure spikes in the wiggler sections were observed
 - Downstream of Oho Wiggler Section (D04 straight section)
 - Downstream of Nikko Wiggler Section (D10 straight section)
 - Beam pips with electron clearing electrodes for countermeasure against the electron cloud effects in LER
 - Knocking the beam pipes at wiggler sections with a "knocker" can cause SBL.
 - Thin electrode (0.1 mm tungsten on 0.2 mm Al_2O_3 ceramic) only on top surface
 - Dusts in the beam pipes removed for NLC construction
 - Knocking beam pipes can reduce SBL.
 - Higher total currents result in more frequent SBL.
- No data to suggest that anything other than dust is the cause of SBL.
 - No data showing discharge at LER collimators.
 - Most likely cause of SBL at LER is dust at wiggler sections.

Knocker

(only on top surface)

Electron clearing electrode

Dusts in the beam pipes removed for NLC construction

Sudden Beam Loss (SBL) #3

Countermeasure against SBL during summer shutdown

- Turning beam pipes with electron clearing electrode upside down
 - 15/50 beam pipes will be turned upside down. (56 m/185 m = 30 %)
 - Oho straight section : 13/16 beam pipes (D04 wiggler section) and 2/4 beam pipes (D05 NLC section) will be turned upside down.
 - It takes over 1 month to turn 13 beam pipes upside down at D04 wiggler section.
 - Nikko straight section : 30 beam pipes at Nikko wiggler section will not be turned upside down.
- Visual check and dust cleaning of beam pipes which will not be turned upside down.
- Knocking as many beam pipes (with electron clearing electron or groove structure) as possible. •

First trial of Non-linear collimation

- Comparison between D05V1(NLC) and D06V1(Conventional type) with the same effective collimation gap
 - Storage beam B.G. : D05V1 suppressed more beam B.G. than D06V1
 - Beam lifetime : Very similar between D05V1 and D06V1
 - Beam blowup : No vertical blowup was observed with D05V1 (Suppression of beam instability (TMCI))
- Other findings :

18th July 2024

- Injection beam B.G. may also be reduced by NLC with tuning of β_x at the skew sextupole magnets.
 - It will be tested during 2024c run.
- Radiation level in the Oho Experimental Hall increases as closing the D05V1 gap.
 - Though it was still lower than the regulatory limit, measures are required for future current increases.
 - During the summer shutdown, additional radiation shielding will be installed.

ICHEP 2024@PRAGUE

Positron beam

Experimenta

Tsukuba (Belle II)

Non-linear collimation

ntal Collimator, SuperKEKB LER(f90) type ontal Collimator, SuperKEKB HER(f80x220) ty

D05V1

Injection & Maximum beam currents

- HER: maximum beam current 1.2 A (Target : 1.4 A)
 - Had straggled with poor injection efficiency and stability despite upgrade to HER injection point during LS1 (aperture enlargement, new septum magnet).
 - Frequent beam aborts caused by injection beam (especially 2nd bunch)
 - Long-term dedicated beam studies and injection tuning
 - Finally, injection efficiency improved significantly during last 2 weeks of 2024ab run.
 - Precise measurement of injection beam orbit and its correction
 - Fine optics matching between MR and BT
 - Benefit of the LS1 upgrade
 - It seems possible to further increase the beam current.
- LER: maximum beam current 1.5A (Target : 1.8 A)
 - It was found that injection degradation occurs due to Beam-Beam Interaction effect at high bunch current.
 - Lower betatron tune can improve injection efficiency.
 - For further beam current increase, it is necessary to maintain stable 2-bunch injection, which could not be maintained for a long period during this run.
- Plan for 2024c run
 - Further beam current increase (> 2 A) to make new luminosity record
 - Deeper understanding of Beam-Beam interaction effect
 - Finding a good operation point (good betatron tunes for both Injection and luminosity)
 - Establishment of stable 2-bunch injection in advance

5 ((

Luminosity

2024a HBC CW ON

2024a HBC CW OFF

0.05

cm⁻²s⁻²/mA²]

Specific lumi. [×10³¹

LER: CW 80 % / HER: CW 40 %

- Peak luminosity $L_{p} = 4.47 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Specific luminosity $L_{sp} = 5.9 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}/\text{mA}^2$
 - $\beta_v^* = 0.9 \text{ mm}$
 - Beam current : HER/LER = 1180/1450
 - Number of bunches : 2249 •
 - Bunch current product $(I_{h+}I_{h-})$: 0.338 mA² ٠
 - Crab waist ratio : HER/LER = 60/80 % •
- Findings from Beam-Beam Study & High Bunch Current Study
 - Crab waist is effective to increase luminosity and $I_{h+}I_{h-}$
 - Single beam vertical blowup was observed over 0.5 mA/bunch in both rings. •
 - LER vertical blowup due to Beam-Beam effect was observed
 - Lowering horizontal tune improves LER injection efficiency and helps to increase beam current.
 - $L_{\rm p}$ reached 1.38×10³⁴ cm⁻²s⁻¹ with 393 bunches
- Outlook for 2024c run
 - Increase total current (number of bunches) :
 - $L_{\rm n} = 1.38 \times 10^{34} \,{\rm cm}^{-2}{\rm s}^{-1} \times 2346/393 = 8.27 \times 10^{34} \,{\rm cm}^{-2}{\rm s}^{-1}$
 - Further β_v^* squeezing (0.8 mm) and increasing total beam current Target : $L_{\rm p} = 1 \times 10^{35} \, {\rm cm}^{-2} {\rm s}^{-1}$

- 2024ab run was conducted as scheduled from January 29th to July 1st.
 - First run after Long Shutdown 1
 - NLC system construction, upgrade of HER injection point, etc.
 - Peal luminosity : 4.47×10^{34} cm⁻²s⁻¹
 - Integrated luminosity : 103 fb⁻¹
 - βy^* squeezing : mostly 1.0 mm, finally 0.9 mm
- There are many findings from 2024ab run
 - First demonstration of the effectiveness of the NLC system
 - Improvement of HER injection efficiency at last (30% -> 80%)
 - Still struggle with SBL, but on track to solve it for LER
 - Turning beam pipes with electron clearing electrodes upside down during summer shutdown
 - Also struggle with difficulty to increase beam currents and poor machine stability
- 2024c run will start on October 9th.
 - Operation period : 2 months
 - Extending operation time is difficult due to rising electricity prices.
 - Target luminosity : 1×10³⁵ cm⁻²s⁻¹
 - Need to overcome many challenges.

Thank you for your attention.

Inter-University Research Institute Corporation **High Energy Accelerator Research Organization (KEK)** 大学共同利用機関法人 高エネルギー加速器研究機構 (KEK)

Inter-University Research Institute Corporation High Energy Accelerator Research Organization (KEK) 大学共同利用機関法人高エネルギー加速器研究機構 (KEK)

Luminosity history

- Peak Luminosity : 4.47×10²⁴ cm⁻²s⁻¹
 - 95 % of the world record achieved in 2022ab run

Int. luminosity in 2024ab run

Date

- SuperKEKB world record : 4.7×10²⁴ cm⁻²s⁻¹
- Maximum daily integrated luminosity : •
 - Recorded : 2.01 fb⁻¹
 - Delivered : 2.11 fb⁻¹
- Integrated luminosity in 2024ab run : •
 - Recorded : ~ 103 fb⁻¹ •
 - Delivered : \sim 111 fb⁻¹ •

Current

Recorded

Delivered

120

Int. Lumi. [fb⁻¹] 09 09 00 00

20

Beam pipe knocking

Oho straight section

• Beam pipe removal work for NLC construction

Oho straight section

• Beam pipe removal work for NLC construction

Nikko straight section

• There are also superconducting RF cavities at Nikko straight section.

Nikko straight section

Vacuum works during LS1 at a glance (MR)

Area open to dry nitrogen or atmosphere

18th July 2024

ICHEP 2024@PRAGUE

26

18th July 2024

- Efforts are underway to suppress the effects of thermal deformation of beam pipes due to SR irradiation for stable beam operation.
 - New BPM support to isolate the beam pipe and quadrupole magnet (Installed on April 17th)
 - Thermal deformation causes the quadrupole magnet to move, resulting in beam optics distortion.
 - New feedback system to suppress the effects of optics change due to thermal deformation at strong sextupole magnets. (From early April)

18th July 2024

Beyond 10³⁵ strategy

ICHEP 2024@PRAGUE

Super KEKB