

Low Emittance Optics Design for CEPC Booster

Dou Wang*

ICHEP 2024 PRAGUE

On behalf of CEPC AP group

The CEPC booster has been designed to provide electron and positron beams at different energies for the collider. The latest booster design aligns with the TDR's higher luminosity objectives for four energy modes. The booster's optics have transitioned from FODO in the CDR to TME structure, resulting in a significant reduction in emittance to match the lower emittance of the collider in the TDR. Extensive efforts have been invested to address the challenge of error sensitivity for the booster, ensuring that the dynamic aperture with errors meets the requirements across all energy modes. Additionally, a combined magnets scheme (B+S) has been proposed to minimize the magnet construction costs and reduce the operation costs through lower power consumption.

CEPC TDR Param		(CEPC a		
	77.	11/		1	Off-axis i

	Higgs	<i>W</i>	Z (21)	ttbar						
Number of IPs	2									
Circumference (km)	100.0									
Bunch number	268	1297	11934	35						
Beta functions β_x^* / β_v^*										
(m/mm)	0.3/1	0.21/1	0.13/0.9	1.04/2.7						
Emittance $\varepsilon_x/\varepsilon_v$ (nm/pm)	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7						
Energy acceptance (%)	1.6	1.0	1.0	2.0						
Luminosity per IP										
$(10^{34} \text{cm}^{-2} \text{s}^{-1})$	5.0	16	115	0.5						

Booster design

- TME like structure (cell length=78m)
- Combined magnets (D+S)
- Interleave sextupole scheme
- Emittance@120GeV=1.26nm

788

No.

中國科學院為能物理研究所

Institute of High Energy Physics

Chinese Academy of Sciences

Lattice design with TME structure, lower emittance than CDR

Sufficient Dynamic Aperture for all energies with errors

s (m)

Booster	ne	rai	mei	ter	C				<i>tt</i> Off axis injection	H Offaxis On a injection inject	W xis Off ax ion injection	z on Offaxis injecti		Error	stu	ıdy		0.016 0.014 0.012 0.011 0.012 0.011 0.012 0.011 0.016 0.014 0.012 0.012 0.011 0.016 0.014 0.012 0.012 0.010 0.016 0.014 0.012 0.	0.018 0.016 0.014 0.012 0.01		é jeV
				Beam energy	GeV	180	120	80	45.5						≥ 0.008 0.006 0.006 0.006	₹ 0.008					
					Bunch number		35	268 261	+7 1297	3978 59	57					0.004	0.004		-		
							Maximum bunch charge	nC	0.99	0.7 20.	3 0.73	0.8 0.	1		Dipole	Quadrupole	Sextupole	0.002	0.002		
							Maximum single bunch current	μΑ	3.0	2.1 61.	2 2.2	2.4 2.	2	Transverse shift X/Y (μm)	100	100	-	-0.03 -0.02 -0.01 0 0.01 0.02 0.03 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04	-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01	0.02 0.03 0.04 0.0	.05
		tt	Н	W		7	Threshold of single bunch current	μΑ	91.5	70	22.16	9.57		Longitudinal shift Z (µm)	100	150	-	0.007 ··································	AX (III)		
Beam energy	GeV			30		<i>L</i>	Threshold of beam current (limited by RF system)	mA	0.3	1	4	16		Tilt about X/Y (mrad)	0.2	0.2	-	0.009 0.008 120GeV 0.008 120GeV 0.006 0.006 180GeV 0.006 0.006 0.006	The definition of beam stay clear regio	m at different ene	ergies
Bunch number	_	35	268	1297	3978	5967	Beam current	mA	0.11	0.56 0.9	8 2.85	9.5 14	4	Tilt about Z (mrad)	0.1	0.2	-	0.005	30GeV 45.5GeV 80GeV (on axis) (off axis) (off axis)	120GeV 18 (on axis) (off axis)	80GeV (on axis)
Threshold of single bunch current	μΑ	8.68	6.3		5.8		Growth time (coupled bunch instability)	ms	16611	2359 121	5 297.8	49.5 3	6	Nominal field	1e-3	2e-4	3e-4		lorizontal beam stay $4\sigma_{inj,x}$ $4\sigma_x$ $5\sigma_x$	$6\sigma_x$ $5\sigma_x + 3mr$	$6\sigma_x + 3mm$
(limited by coupled bunch instability)	mA	97	106	100	93	96	Bunches per pulse of Linac		1	1	1	2		dipole		anaquin	പല	0.003	lear region BSC_x + 5mm + 5mm + 3mm retical beam stay $4\sigma_{ini,y}$ $4\sigma_y$ $5\sigma_y$	+ 3mm $39\sigma_y$	$50\sigma_v$
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9	Time for ramping up	s	7.1	4.3	2.4	1.0				quadrup		0.001	lear region BSC_y + 5mm + 5mm + 3mm	$+ 3mm$ $5\sigma_y + 3mm$	n + 3mm
Single bunch current	μΑ	3.4	2.3	2.4	2.65	2.69	Injection duration for top-up (Both beams)	s	29.2	23.1 31.	8 38.1	132.4		B1/B0≤2×10 ⁻⁴					lorizontal emittance 6.5 0.18 0.56 nm)	1.26	2.84
Beam current	mA	0.12	0.62	3.1	10.5	16.0	Injection interval for top-up	s	65	38	155	153.5		B2/B0≤5×10 ⁻⁴		$B2/B1 \le 3 \times$	10-4		oupling (%) 100 1 1 components (second 0.15 0.027 0.067	1	1
Growth time (coupled bunch instability	r) ms	2530	530	100	29.1	18.7	Current decay during injection interval				3%		\neg	B3/B0 ≤ 2×10 ⁻⁵		$B3/B1 \le 2 \times$	10-4	Accuracy Tilt Gain Offset W/	eam energy spread 0.15 0.037 0.067 %)	0.1	0.147
Energy spread	%			0.025			Energy spread	%	0.15	0.099	0.066	0.037	\neg	$B4/B0 \le 8 \times 10^{-5}$		$B4/B1 \le 1 \times$	10 ⁻⁴	$(m) \qquad (mrad) \qquad BBA(mm)$			
Synchrotron radiation loss/turn	10-5			0.5			Synchrotron radiation loss/turn	GeV	8.45	1.69	0.33	0.034		B5/B0≤2×10 ⁻⁵		$B5/B1 \le 1 \times$	10-4	BPIVI(10H2) 1e-7 10 5% 30e-3	Pasidual arrara	v	V
Emittance	nm			0.076			Momentum compaction factor	10-5			1.12			DC /DO < 0.10 ⁻⁵			10-5		Residual errors	^	
Natural chromaticity	H/V			-372/-269)		Emittance	nm	2.83	1.26	0.56	0.19	-	B0/B0 ≤ 8×10 3		R0\R1 ≥ 2×	10 °		(rms)		
RF voltage	MV	761.0	346.0		300.0		Natural chromaticity		2.05	1.20	-372/-269		_	$B7/B0 \le 2 \times 10^{-5}$		$B7/B1 \le 5 \times$	10 ⁻⁵	Orbit/dispersion correction	Orbit (mm)	0.1300 0).0724
Betatron tune v_x / v_y			32	21.23/117.	.18			11/ v		32	1 27/117 19		_	$B8/B0 \le 8 \times 10^{-5}$		$B8/B1 \le 5 \times$	10 ⁻⁵		Beta beating (%)	0.57	0.19
Longitudinal tune		0.14	0.0943		0.0879		Betation tune v_{x}/v_{y} RF voltage	GV	97	2.17	0.87	0.46	-	$B9/B0 \le 2 \times 10^{-5}$		$B9/B1 \le 5 \times$	10 ⁻⁵	+ optics correction	Dispersion (mm)	1.00	2 5
RF energy acceptance	%	5.7	3.8		3.6		Longitudinal tune		0.14	0.0943	0.087	9 0.0879	\neg	B10/B0≤8×10 ⁻⁵		B10/B1≤5×	<10 ⁻⁵		Dispersion (mm)	1.02	3.5
Damping time	s		1	3.1			RF energy acceptance	%	1.78	1.59	2.6	3.4							-		
Bunch length of linac beam	mm			0.4			Damping time	ms	14.2	47.6	160.8	879									
Energy spread of linac beam	%			0.15			Natural bunch length	mm	1.8	1.85	13	0.75									
Emittance of linac beam	nm			6.5			Full injection from empty ring	h	0.1	0.14 0.1	6 0.27	1.8 0	08								
	On-axis injection from booster to collider																				

R&D plan for EDR phase (2024-2027) before construction have been established, with the aim of starting the construction in "15th five-year-plan" (2026-2030). On-axis injection scheme was developed for CEPC @ Higgs to reduce the DA requirement of the collider ring.

* wangd93@ihep.ac.cn