

Institute of High Energy Physics Chinese Academy of Sciences

The CEPC radiation protection issues

G. Y. Tang^{#, 1)}, H. Y. Shi¹⁾, Q. Y. Liu¹⁾, Z. J. Ma¹⁾

Institute of High Energy Physics, CAS, China 1)

Circular Electron-Positron Collider (CEPC) is a 100 km circumference double-ring Collider. The radiation protection issues are complicated topics at the CEPC. The CEPC machine will operate at different beam energies, from 45.5 GeV up to 180 GeV and at beam currents, from 3.3 mA to 1340.9 mA. The collider dumping system, synchrotron radiation shielding, the linac bulk shielding, the linac dump dimensions and the radioactivity productions are introduced.

1. The Collider dump

 Besides a kicker and septum, two dilution kickers are used to dilute the beam horizontally and

The wave forms of dilution kickers are in the figures below.

ichep2024.org

• The tunnel geometry is shown in the figures below.

- Operation scenarios: 10-year Higgs + 2-year Z + 1-year W + 5-year ttbar
- Put lead between coils and beam-pipes for collider. The absorbed doses to the coil insulations are shown in the below figures.
- 2.5-cm lead for collider dipole, quadrupole and sextupole seem enough.
- The dose to booster dipole and quadrupole is not too high, but neither for sextupole. Should simulate more precisely, with accurate ramping scheme.

Z (cm) • The upper limit of the three quantities are listed in the table below, comparing with the different shielding materials.

Concrete, iron, lead and their combination.

	Upper limit	3-leg maze with 1m- thick concrete wall	20-cm iron	20-cm lead	20-cm concrete	80-cm concrete	20-cm lead and 20-cm concrete
High energy hadron fluence (cm ⁻² y ⁻¹)	2×10^{10}	$< 3 \times 10^{6}$	< 10 ⁹	$< 6 \times 10^{8}$	$< 4 \times 10^{9}$	$< 2 \times 10^8$	$< 1 \times 10^{8}$
Absorbed dose (Gy/y)	20	< 10 (1m away from entrance)	< 60	< 6	< 4000	< 10	<6
1MeV equivalent neutron fluence $(cm^{-2} y^{-1})$	2×10^{11}	$< 3 \times 10^{8}$	< 10 ¹²	$< 3 \times 10^{11}$	$< 2 \times 10^{11}$	$< 2 \times 10^{9}$	< 1×10^{11}

3-leg maze work fine so all electronics in auxiliary tunnel are safe.

10² 🖗

For electronics in the tunnel, need more optimization to find reliable and feasible design.

3. Linac Bulk shielding & Dumps

Beam loss assumptions

Right

Bottom

Тор

0.2m

0.3m

9000

Position	Length	Beam energy	Number of bunches [s ⁻¹]	Beam loss/bunch [nC]	Number of particles [10 ¹⁰ /s]
FAS	100m	300MeV		0.5	62.5
Positron target	15mm	4GeV		10	1250
PSPAS	15m	5~200MeV	200	10	1250
646	3m	300MeV		2	250
343	30m	600MeV		0.2	25
TAS	1163m	1.1~30GeV	,	0.1	12.5
hicknes	s of bu	lk shield	ing • Exam	nple: dose-eq	for SAS
Thickne ss	FAS	SAS TA	S 400		10 ⁸ 10 ⁶
Left	0.3m	1.9m 0.3	m _200		10 ⁴ Š

Dump structure: carbon +Iron +polyethylene

	Number of		C		C+Fe	C+Fe+Polyethylene		
Beam energy	particles [10 ¹⁰ /s]	R/m	Length/m	R/m	Length/ m	R/m	Length/m	
60 MeV	12.5		0.15	0.7	1.0			
4 GeV	12.5		1.25	1.1	2.4	1.2	2.6	
250 MeV	6.3	0.05	0.4	0.5	0.9	0.55	1.0	
1.1 GeV	6.3	0.05	0.75	0.75	1.6	0.85	1.7	
6 GeV	3.7		1.45	0.9	2.4	1	2.5	
30 GeV	3.7	-	2.6	1.2	3.7	1.3	3.8	

Iayout

Example: dose-eq

1800.0m

4.1m 2.0m 1.3m

1.9m

2.1m

0.3m

0.3m

4. Radioactivity productions

 In/around circular tunnel, the densities of Long half-life isotopes are lower than mandatory standard, GB18871.

			Cooling				Water wall					Rock wall		C1
		Half	water			Half-	Specific				Half-	Specific		Be
		-life	Specific			life	activity/GB				life	activity/GB	Beam	H
			18871				18871					18871	losses	P3
	O15	122s	2.44		O15	122s	2e-3			Mn5	24.04		@Z-	P3
Beam		570	05.7	Beam	C14	5700a	5e-10	Bea	n _	4	3120	0.94E-04	pole	CI3
losses	C14	0a	3.5e-7	losses @7-	Be7	53d	3e-5		es (Ca45	163d	5.49E-06		CI3
pole	Be7	53d	1.3e-2	pole	H3	12a	6e-9		, _	Na22	2.6y	7.20E-04		Ara
	H3	12a	2.3e-6		F18	2h	5e-6			H3	12a	5.90E-09		Ar4
SR		Nc	ne	SR	C14	5700a	2e-12	SR		H3	12a	1e-10	SR	C1
@ttbar	ettbar None		@ttbar	H3	12a	1e-10	@ttb	ar		120	10 10	@ttbar	Ar4	

			Air in tunnel				
		Half- life	Specific activity/GB18871				
	O15	122s	2.7e-4				
Beam osses @Z- pole	C14	5700a	7.7e-7				
	Be7	53d	1.1e-5				
	H3	12a	3.5e-9				
	P32	14d					
	P33	25d	1.9e-8				
	Cl36	3e5a					
	Cl38	37m					
	Ar37	35d	6.1e-9				
	Ar41	1.8h	1.4e-3				
SR	C14	5700a	6.5e-6				
ttbar	Ar41	2h	1.5e-2				

In linac tunnel air, the densities of Long half-life isotopes are lower that	n mandatory
standard, GB18871.	,

	Holf	Air in Linac		Half-	Air in Linac
	life	Specific		life	Specific activity/GB18871
		activity/GB18871	P32	14d	4.6×10^{-5}
Ar41	1.8h	0.13	Si31	2.6h	4.3×10^{-4}
Ar37	35d	3.4×10^{-7}	F18	1.8h	2.7×10^{-4}
CI38	37m	0.41	O15	2.0m	2.58
CI36	3e5a	3.1×10^{-10}	C14	1.2m	7.8×10^{-5}
S35	88d	3.4×10^{-5}	Be7	53d	3.8×10^{-2}
P33	25d	4.6×10^{-6}	H3	12a	1.3×10^{-5}

Toxic gases is also lower than mandatory standard.

• In circular tunnel air, O_3 : $8.3 \times 10^{-6} \mu g/m^3$. In linac tunnel air, O_3 : $1.0 \times 10^{-6} \mu g/m^3$.

• Both of them << mandatory standard: O_3 : 160 µg/m³.

Also, the density of NO_x is smaller than mandatory standard.

#tanggy@ihep.ac.cn

Institute of High Energy Physics (IHEP), Beijing, China