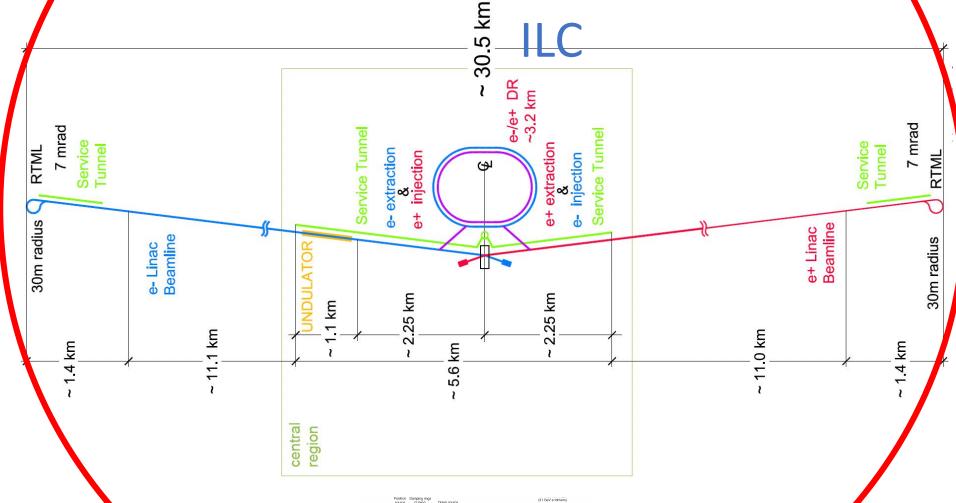


Hybrid Asymmetric Linear Higgs Factory (HALHF)

B. Foster, R. D'Arcy & C.A. Lindstrøm

Foster, D'Arcy and Lindstrøm, New J. Phys. 25, 093037 (2023) Lindstrøm, D'Arcy and Foster, arXiv:2312.04975



Hybrid Asymmetric Linear Higgs

Factory (HALHF)

CEPC

Hybrid Asymmetric Linear Higgs Factory (HALHF)

- For decades plasma acceleration has promised very high gradients => cheap LCs. HALHF for first time tries to make this a reality.
- The basic idea is there are enough problems with a PWFA e⁻ accelerator; e⁺ is even more difficult. Bypass this for e⁺e⁻ collider by using conventional linac for e⁺.
- For this to be attractive financially, conventional linac must be low energy => asymmetric energy machine.
- This requirement led to (at least for us) unexpected directions the more asymmetric the machine became, the better!

B. Foster, ICHEP Prague, 07/24

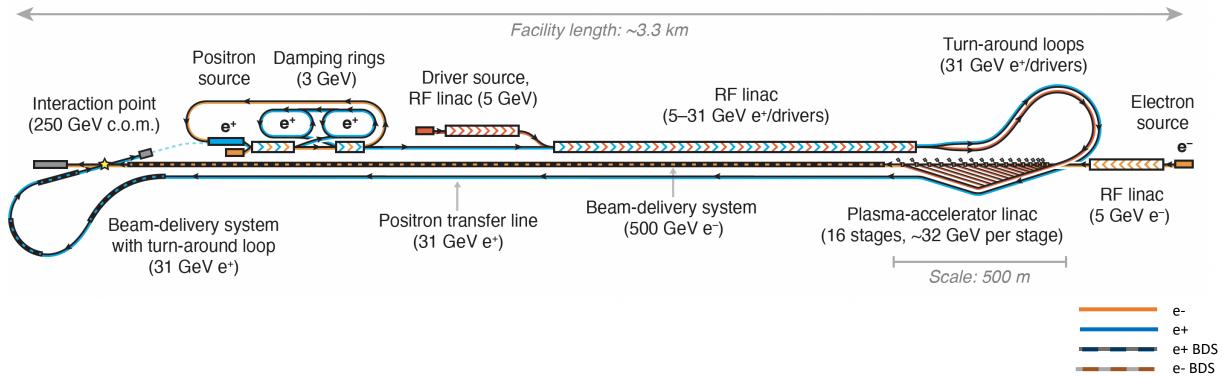
Relativistic Refresher

$$E_e E_p = s/4 \tag{1}$$

and

$$E_e + E_p = \gamma \sqrt{s},\tag{2}$$

where E_e and E_p are the electron and positron energies, respectively, govern the kinematics. These two equations link three variables; fixing one therefore determines the other two. For a given choice of positron and centre-ofmass energy, the boost becomes


$$\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right). \tag{3}$$

• It turns out that the (an) optimum (see below) for E_{cm} = 250 GeV is to pick E_e = 500 GeV, E_p = 31 GeV, which gives a boost in the electron direction of γ ~ 2.13.

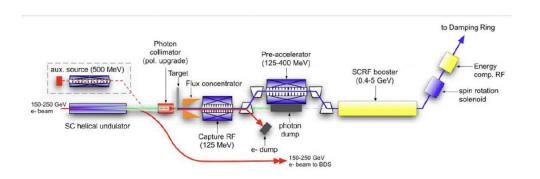
HALHF Layout

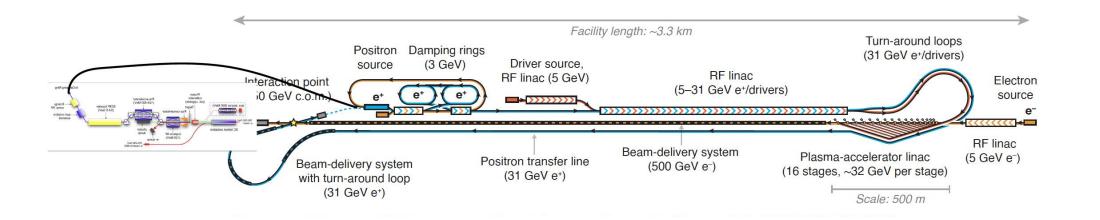
• Overall facility length ~ 3.3 km — which will fit on ~ any of the major (or even ex-major) pp labs. (NB. A service tunnel a la ILC is costed but not shown)

Cost Estimate

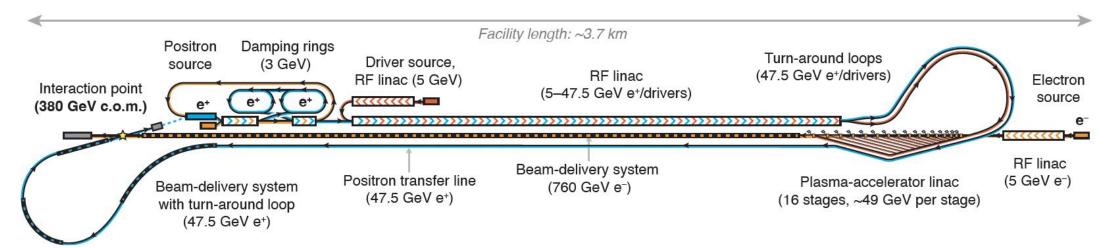
Rough cost estimates for HALHF

- >Scaled from existing collider projects (ILC/CLIC) where possible—not exact.
 - > European accounting (2022 \$): **~\$1.9B** (**~1/4 of ILC TDR cost** @ 250 GeV)
 - >US accounting ("TPC"): \$2.3–3.9B (\$4.6B from ITF model for RF accelerators)
- > Dominated by conventional collider costs (97%) **PWFA linac only ~3% of the cost**


Subsystem	Original	Comment	Scaling	HALHF	Fraction
	cost		factor	cost	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [76], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [46], scaled by length and multiplied by 6 ^b	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam dumps ^e	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~ 10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

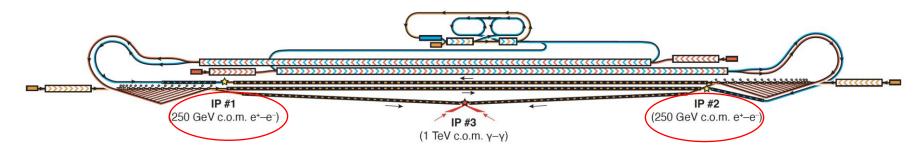

- > Estimated power usage is ~100 MW (similar to ILC and CLIC):
 - >21 MW beam power + 27 MW losses + 2×10 MW damping rings + 50% for cooling/etc.

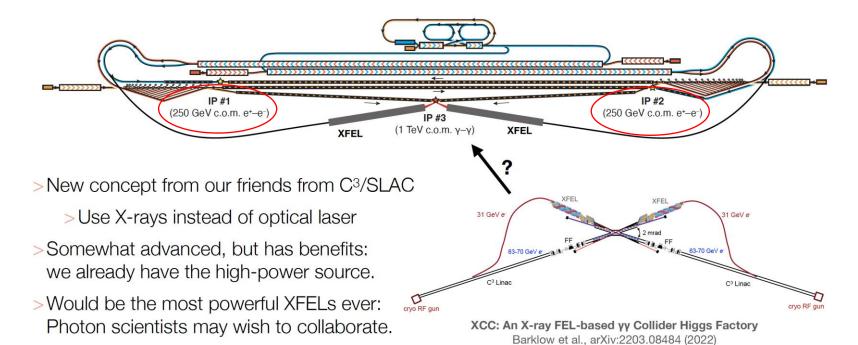
- See Lindstrøm, D'Arcy and Foster, arXiv:2312.04975
- Polarised e⁺
 - > Produce e+ polarization via ILC-like scheme:
 - >ideas exist for E(e-) 500 GeV
 - > wiggler probably longer and more expensive.



• Energy upgrade to ttbar (380 GeV) => 47.5 GeV positrons / 760 GeV electrons (same # of stages, same boost).

•=> +130 m PWFA linac; added cost ~23%; >~25% more power.


- Energy upgrade to Higgs self-coupling, ttH Yukawa (550 GeV).
- 68.5 GeV positrons / 1.1 TeV electrons(same # of stages, same boost, plasma cell length increased to 11m);
- => RF linac more than doubled in length 2.75 km;
- +254 m PWFA linac;
- Roughly 48% increase in cost cf Higgs factory; power increases by 90 MW to 190 MW.
- Add 2nd IP for any energy costs 20% 44% more.



Upgrades: Gamma-gamma collider (XFEL version)

Upgrade Summary

Upgrade	$Additional\ cost \ (MILCU)$	$Fraction\ of\ original\ HALHF\ cost$
Polarised positrons	185	12%
$t\bar{t}$ threshold (380 GeV c.o.m.)	350	23%
Higgs self-coupling (550 GeV c.o.m.)	750	48%
Two IPs	300	19%
Two IPs + additional linac	689	44%
Two IPs + additional linac & positron source	804	52%
γ - γ collider (laser-based)	250	17%
e^+-e^- collider, symmetric (assuming e^+ PWFA)	~ 0	~ 0

Table 2. Estimated cost of upgrades discussed in the text. The final two upgrades require the "Two IPs + additional linac & positron source" upgrade to have already been carried out.

Current Status

HALHF Collaboration "kick-off" meeting
@ DESY 23/10/23.
Attendance ~ 50.

Monday, 23 October 2023, 13:00-22:00 (incl. dinner)

	,, ==	October 2023, 13:00	, ,	
13:00			HARBOR (Building 610, seminar room) or Zoom	
13:00	10'	Wim Leemans	Global considerations	
HALHF	introc	luction and status		
13:10	10'	Brian Foster	General introduction to HALHF	
13:20	40'	Carl Lindstrøm	Proposed design, recent developments and upgrades	
13:50	10'	Richard D'Arcy	Project staging / demo facilities (R&D milestones)	
14:10	30'	All	Open discussion	
R&D fo	r HAL	HF		
14:40	35'	Jenny List	Physics and detector systems for HALHF	
15:15	30'		Coffee break	
15:45	60'	Assessment of challenges for the conventional systems		
	10' 10'	Nick Walker Nick Walker & Steffen Doebert	Introduction Linacs	
	10'	Gudrid Moortgat-Pick	Positron source	
	10'	Spencer Gessner	Beam delivery system	
	20'	All	Open discussion	
16:45	60'	Assessment of challenge		
	5' 15' 5' 15'	Richard D'Arcy Erik Adli Kris Põder Richard D'Arcy	Introduction High beam energy and quality Spin polarisation High beam power	
	20'	All	Open discussion	
17:45	15'	Brian Foster, Wim Leemans	Wrap-up and next steps	
18:00			Continued discussions (with pizza dinner and drinks)	
22:00		Adjourn		

• HALHF Workshop
@ Oslo 4-5/4/24.
Attendance ~ 30 (physical+ Zoom).

https://indico.cern.ch/event/1370201/

Parameter Optimisation

- A "simple" cost model for optimization
- Need to implement sufficient complexity for all parameters to have highcost extrema:
- > Example:
 - Low rep. rate long runtime = high cost of constant-power overheads
 - High rep. rate high peak power = high cost of power infrastructure
- Currently implemented (analytic only, no simulation):
- > RF linacs (voltage limited by power and BDR, efficiency based on filling time/cooling)
- Damping rings (radius based on bunch-train length, damping-time limits, rep rate)
- > Plasma linac (lengths and efficiencies, but not yet effect on emittance)
- > PWFA emittance growth due to instabilities (model by Lebedev et al.)
- > + turnarounds, BDS, tunnels, power infrastructure, general overheads, dumps

Parameter Optimisation

- Also indicates that separating positron and drive-beam acceleration may be advantageous both for flexibility and cost – but still exploring;
- Also reduced energy asymmetry may be better still exploring this too
- Comprehensive simulation campaign using
 - plasma density 1*10¹⁵.
 - Gradient: 2 GV/m.
 - Efficiency: ~35% wake-to-beam efficiency, driver depletion efficiency 75–80%
 - Electron charge still about 1.6 nC. Driver charge around 8 nC.
 Transformer ratio ~1.5 (somewhat shaped/triangular driver)

18

Summary & Outlook

- HALHF is not just a Higgs Factory
- Work on optimizing parameters underway changes coming!
- Regular monthly HALHF accelerator meetings
- In parallel, physics & detector studies continue (J. List, coord.)
 first indications boost does not impact physics reach
- Oslo Workshop in April; working towards next workshop in Erice, 3-8.10.24
- Short-term goal: "pre-CDR" input to European Strategy and to comprehensive global LC plan.
- Longer-term goal: funding required to start R&D programme

Backup Slides

HALHF Parameter Table

$Machine\ parameters$	Unit	Value	
Center-of-mass energy	GeV	250	
Center-of-mass boost		2.13	
Bunches per train		100	
Train repetition rate	${ m Hz}$	100	
Average collision rate	kHz	10	
Luminosity	${ m cm}^{-2} { m s}^{-1}$	0.81	$\times 10^{34}$
Luminosity fraction in top 1%		57	7%
Estimated total power usage	MW	100	
Colliding-beam parameters		e^{-}	e^+
Beam energy	${ m GeV}$	500	31.25
Bunch population	10^{10}	1	4
Bunch length in linacs (rms)	$ m \mu m$	18	75
Bunch length at IP (rms)	$ m \mu m$	75	
Energy spread (rms)	%	0.15	
Horizontal emittance (norm.)	$ m \mu m$	160	10
Vertical emittance (norm.)	$ m \mu m$	0.56	0.035
IP horizontal beta function	mm	3.3	
IP vertical beta function	mm	mm 0.1	
IP horizontal beam size (rms)	nm	729	
IP vertical beam size (rms)	nm	7.7	
Average beam power delivered	MW	8	2
Bunch separation	ns	80	
Average beam current	μA	16	64

RF linac parameters		
Average gradient	MV/m	25
Wall-plug-to-beam efficiency	%	50
RF power usage	MW	47.5
Peak RF power per length	MW/m	21.4
Cooling req. per length	kW/m	20
PWFA linac and drive-beam pa	rameters	
Number of stages		16
Plasma density	cm^{-3}	7×10^{15}
In-plasma acceleration gradient	GV/m	6.4
Average gradient (incl. optics)	GV/m	1.2
Length per stage ^a	$\dot{\mathbf{m}}$	5
Energy gain per stage ^a	${ m GeV}$	31.9
Initial injection energy	${ m GeV}$	5
Driver energy	${ m GeV}$	31.25
Driver bunch population	10^{10}	2.7
Driver bunch length (rms)	$\mu\mathrm{m}$	42
Driver average beam power	$\dot{M}W$	21.4
Driver bunch separation	ns	5
Driver-to-wake efficiency	%	72
Wake-to-beam efficiency	%	53
Driver-to-beam efficiency	%	38
Wall-plug-to-beam efficiency	%	19
Cooling req. per stage length	kW/m	100

^a The first stage is half the length and has half the energy gain of the other stages (see Section V. 4).

HALHF Parameters cf ILC & CLIC

Parameter	Unit	HALHF		$Unit \hspace{1.5cm} HALHF$		ILC	CLIC
		e^-	e^+	e^-/e^+	e^-/e^+		
Center-of-mass energy	${ m GeV}$	2.	50	250	380		
Center-of-mass boost		2.	13	-	-		
Bunches per train		10	00	1312	352		
Train repetition rate	${ m Hz}$	10	00	5	50		
Average collision rate	m kHz	1	0	6.6	17.6		
Average linac gradient	$\mathrm{MV/m}$	1200	25	16.9	51.7		
Main linac length	km	0.41	1.25	7.4	3.5		
Beam energy	${ m GeV}$	500	31.25	125	190		
Bunch population	10^{10}	1	4	2	0.52		
Average beam current	$\mu { m A}$	16	64	21	15		
Horizontal emittance (norm.)	μm	160	10	5	0.9		
Vertical emittance (norm.)	μm	0.56	0.035	0.035	0.02		
IP horizontal beta function	mm	3	.3	13	9.2		
IP vertical beta function	$\mathbf{m}\mathbf{m}$	0	.1	0.41	0.16		
Bunch length	${ m \mu m}$		5	300	70		
Luminosity	$cm^{-2} s^{-1}$	0.81	$< 10^{34}$	1.35×10^{34}	2.3×10^{34}		
Luminosity fraction in top 1%		57	7%	73%	57%		
Estimated total power usage	MW	10	00	111	168		
Site length	km	3	.3	20.5	11.4		