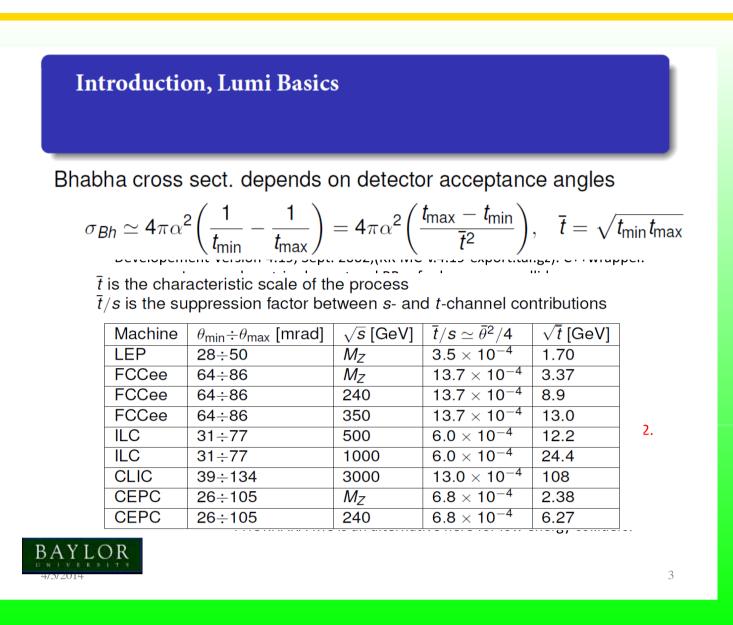
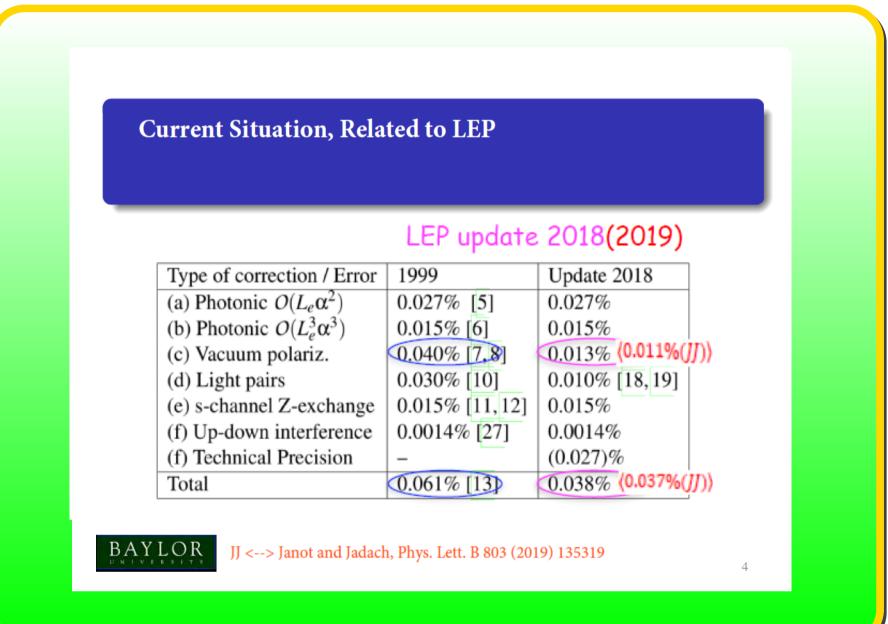
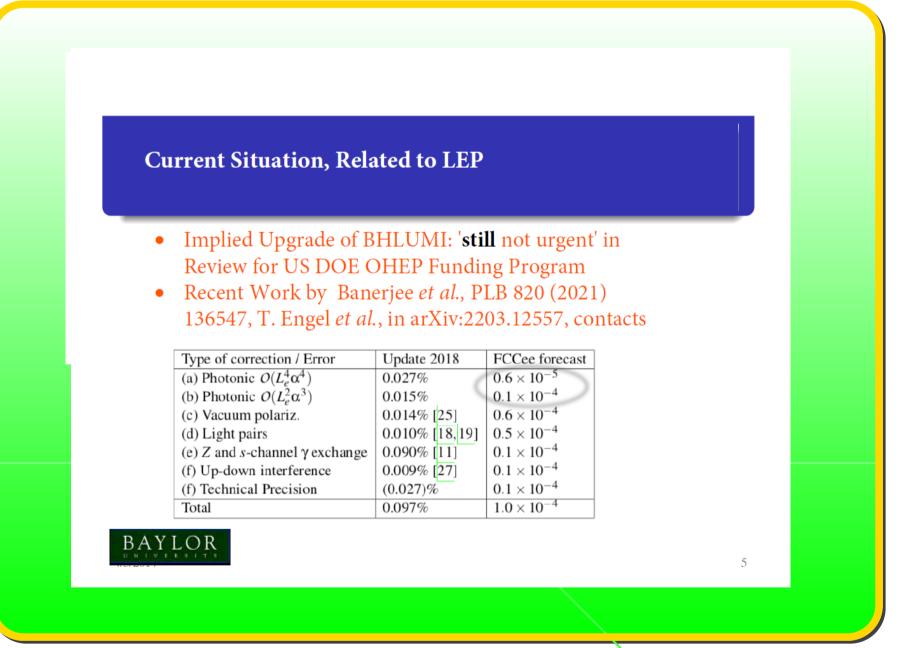
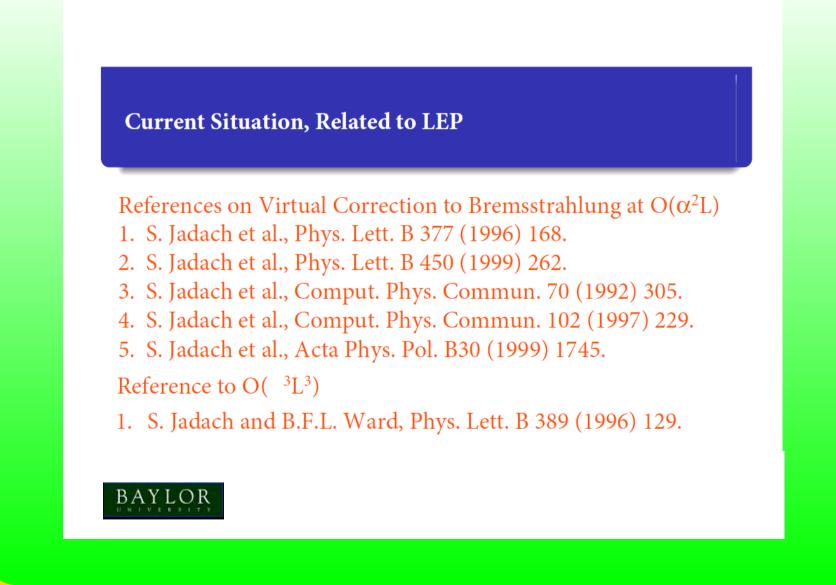
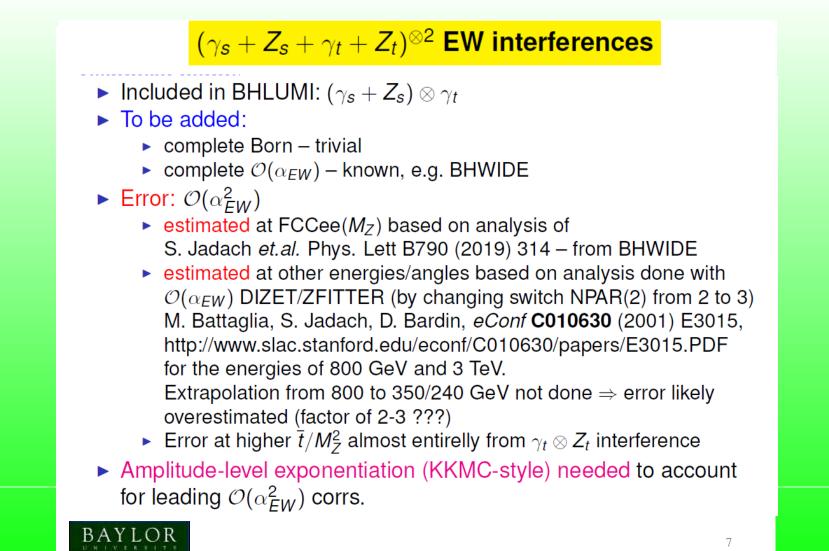

Outlook for Theoretical Precision of the Luminosity at Future Lepton Colliders^a

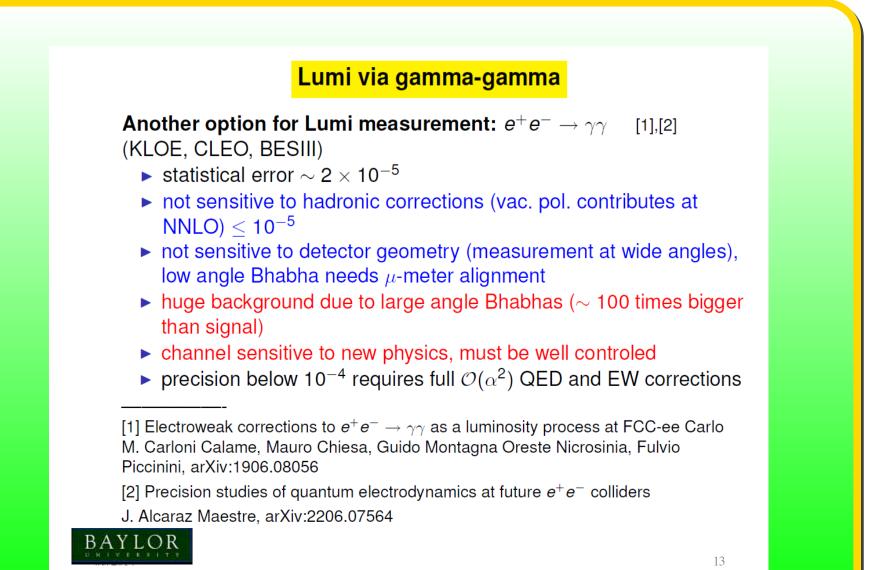

B.F.L. Ward¹, S. Jadach^{2*}, M. Skrzypek², W. Placzek³, S.A. Yost⁴


¹ Department of Physics, Baylor University, Waco, TX, USA, ² Institute of Nuclear Physics, Krakow, PL,

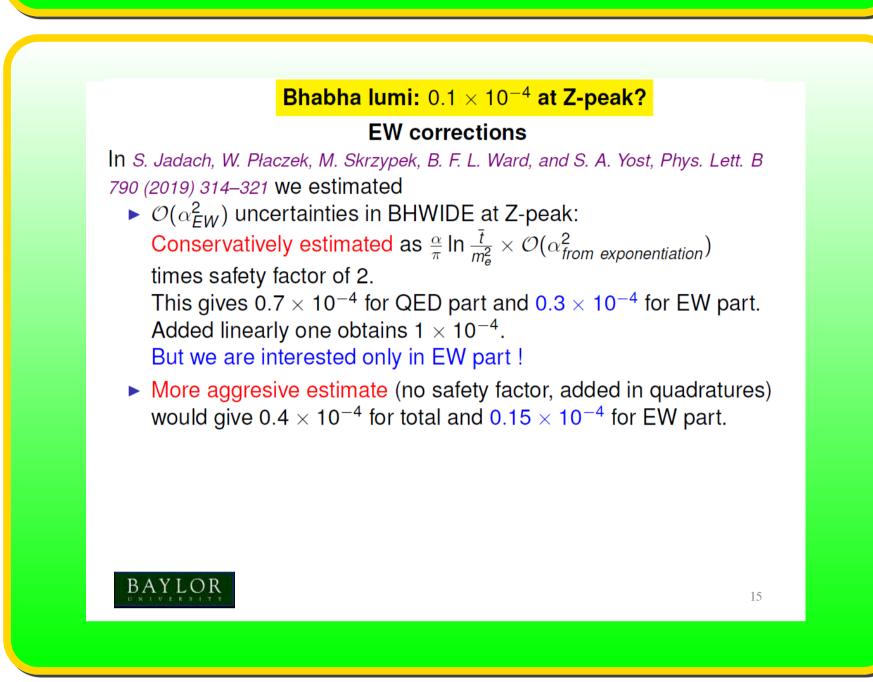

³ Institute of Applied Computer Science, Jagiellonian University, Krakow, PL, ⁴ Department of Physics, The Citadel, Charleston, SC, USA


Work supported in part by Polish National Science Centre grant DEC-2011/03/B/ST2/02632



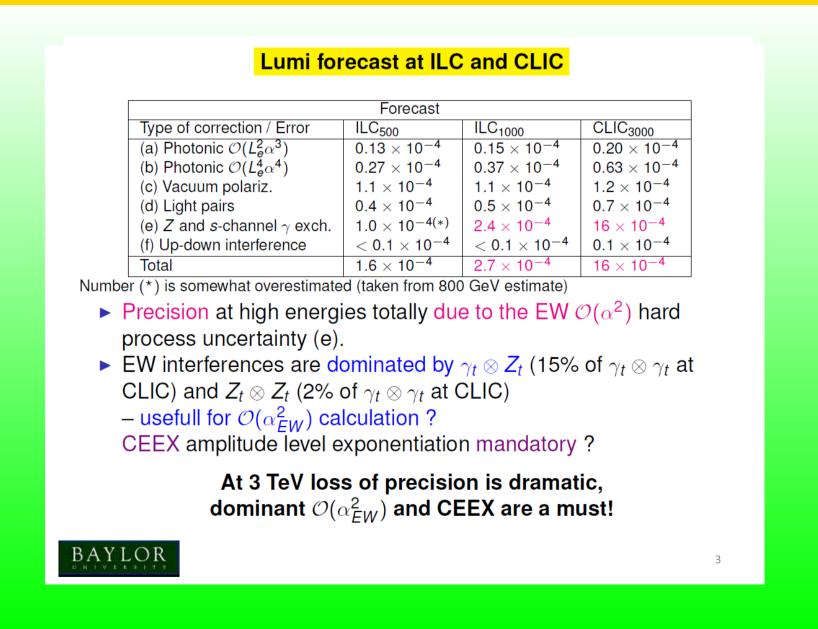

QED photonic up-down interference ► Missing in BHLUMI size at $\mathcal{O}(\alpha)$: 0.07 × \bar{t}_{xx}/s – easy to include, \bar{t}_{xx}/s depends only on angles $\mathsf{LEP} \to \mathsf{FCCee}$: t/s grows 4 times (LEP \to ILC: 2 times) ▶ Error: h.o.t. – suppressed by $(\alpha/\pi) \ln(\bar{t}_{xx}/m_e^2)$ times safety factor of 2 ($\mathcal{O}(\alpha_{OFD}^2)$) calculations exist) – almost negligible Vacuum polarisation ► Uncertainty due to vacuum polarisation: $\delta_{VP}\sigma/\sigma=2\deltalpha_{ ext{eff}}(ar{t})/lpha_{ ext{eff}}(ar{t})$ $ightharpoonup \delta \alpha_{\it eff}(\bar{t})$ from (based on R-ratio measured at low energies) F. Jegerlehner, CERN Yellow Reports: Monographs 3 (2020) 9-37 • $\alpha_{\it eff}(\bar{t})$ from F. Jegerlehner, *Nucl. Phys. Proc. Suppl.* **162** (2006) 22–32 ▶ By FCCee operation time factor of 2 improvement expected (F. Jegerlehner) BAYLOR

 Current state of the art: BHLUMI + external four-fermion code + virtual semianalytical corrections P. Janot and S. Jadach, <i>Phys. Lett. B</i> 803 (2020) 135319 included components: ee-pair, μμ-pair, ττ-pair, qq-pair with s-channel photonic emissions (FERMISV, KORALW) result for LEP: 4 × 10⁻⁴ ± 1 × 10⁻⁴ future prospects for external 4fermion code scenario	virtual semianalytical corrections – P. Janot and S. Jadach, <i>Phys. Lett. B</i> 803 (2020) 135319 • included components: • <i>ee</i> -pair, $\mu\mu$ -pair, $\tau\tau$ -pair, qq -pair with <i>s</i> -channel photonic emissions (FERMISV, KORALW) • result for LEP: $4 \times 10^{-4} \pm 1 \times 10^{-4}$ • future prospects for external 4 <i>fermion</i> code scenario – error components: • $4f + \gamma$ (25% of $4f$) – s vs. t mismatch \sim 30% $\mathcal{O}(\alpha)$ 4 <i>fermion</i> calculations exist for selected final states	Light pairs
▶ future prospects for external 4fermion code scenario – error components: ▶ $4f + \gamma$ (25% of $4f$) – s vs. t mismatch \sim 30% $\mathcal{O}(\alpha)$ 4fermion calculations exist for selected final states $\mathbf{A}f + 2\gamma$, $\mathbf{A}f$	 future prospects for external 4fermion code scenario error components: 4f + γ (25% of 4f) − s vs. t mismatch ~ 30% O(α) 4fermion calculations exist for selected final states 4f + 2γ, 6f future prospects for BHLUMI upgrade scenario error components: 4f + γ − absent − correct t-channel behavior (LL+soft), O(α) 4fermion likely not needed 4f + 2γ − included via exponentiation + LL, 	 virtual semianalytical corrections – P. Janot and S. Jadach, <i>Phys. Lett. B</i> 803 (2020) 135319 included components: ee-pair, μμ-pair, ττ-pair, qq-pair with s-channel photonic emissions (FERMISV, KORALW)
	 error components: 4f + γ − absent − correct t-channel behavior (LL+soft), O(α) 4fermion likely not needed 4f + 2γ − included via exponentiation + LL, 	▶ future prospects for external 4fermion code scenario $-$ error components: ▶ $4f + \gamma$ (25% of $4f$) $ s$ vs. t mismatch \sim 30% $\mathcal{O}(\alpha)$ 4fermion calculations exist for selected final states $+$ $4f + 2\gamma$, $6f$


Light pairs	
Extrapolation to other energies/angles • use LEP result for ff : $4 \times 10^{-4} \pm 1 \times 10^{-4}$ and scale with $\ln^2(\bar{t}_{xx}/m_{yy}^2)/\ln^2(\bar{t}_{LEP}/m_{yy}^2)$ (pairs)	
 use LEP result for ff γ terms: 20% × 4 × 10⁻⁴ (G. Montagna, M. Moretti, O. Nicrosini, A. Pallavicini, and F. Piccinini, Nucl. Phys. B547 (1999) 39–59), and scale with 	
$\ln(\bar{t}_{XX}/m_e^2)/\ln(\bar{t}_{LEP}/m_e^2)$ (photons) • τ -pair (negligible at LEP) estimated relative to muon-pair as $\ln^2(\bar{t}_{XX}/m_\tau^2)/\ln^2(\bar{t}_{XX}/m_\mu^2)$	
▶ hadron-pair estimated relative to muon-pair as $R_{had} \times \ln^2(\bar{t}_{xx}/(0.5 GeV)^2) / \ln^2(\bar{t}_{xx}/m_\mu^2)$	
BAYLOR 10	

		Forecast		
	Type of correction / Error	FCCee _{Mz} [1]	FCCee ₂₄₀ [2]	FCCee ₃₅₀ [2]
	(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.10×10^{-4}	0.10×10^{-4}	0.13×10^{-4}
	(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.06×10^{-4}	$0.26 \times 10^{-4(a)}$	$0.27 \times 10^{-4(a)}$
	(c) Vacuum polariz.	0.6×10^{-4}	1.0×10^{-4}	1.1×10^{-4}
	(d) Light pairs	0.5×10^{-4}	0.4×10^{-4}	0.4×10^{-4}
	(e) Z and s -channel γ exch.	$0.1 \times 10^{-4(\diamond)}$	$1.0 \times 10^{-4(*)}$	$1.0 \times 10^{-4(*)}$
	(f) Up-down interference	0.1×10^{-4}	0.09×10^{-4}	0.1×10^{-4}
	Total	1.0×10^{-4}	1.5×10^{-4}	1.6×10^{-4}
V	sion dominated by: \prime acuum polarisation (c) - \prime The FW $\mathcal{O}(\alpha^2)$ uncertain			ı
VTO	,	ty (e): Numbe n 800 GeV es erestimated (0	rs (*) are likely timate) – facto 0.3×10^{-4} ?)	r 2 too big ?
VTO	$ ho$ acuum polarisation (c) - The EW $\mathcal{O}(lpha^2)$ uncertain verestimated (taken from lumber (\diamond) possibly under Precision loss at	ty (e): Numbe n 800 GeV es erestimated (0	rs (*) are likely timate) – facto 0.3×10^{-4} ?) ies reasonable	r 2 too big ?
VTON	$ ho$ acuum polarisation (c) - The EW $\mathcal{O}(lpha^2)$ uncertain verestimated (taken from lumber (\diamond) possibly under Precision loss at	ty (e): Numbe n 800 GeV es erestimated (0 higher energ of 2 loss w.r.t	ers (*) are likely timate) – facto 0.3×10^{-4} ?) ies reasonable M_Z	r 2 too big ?
► V ► T O N	m Paragraphical Paragraphic	ty (e): Numbe n 800 GeV es erestimated (0 higher energ of 2 loss w.r.t. B. F. L. Ward, S. A	ers (*) are likely timate) – facto 0.3×10^{-4} ?) sies reasonable M_Z . Yost, <i>Phys. Lett. B</i>	r 2 too big ? 790 (2019) 314

	ly for FCCee _{MZ}		
Type of correction / Error	Published [1]	Redone	
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.10×10^{-4}	0.10×10^{-4}	Lumi at FCCee _{M₇}
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.06×10^{-4}	0.06×10^{-4}	_
(b') Photonic $\mathcal{O}(\alpha^2 L_e^0)$		0.17×10^{-4}	Forecast study
(c) Vacuum polariz.	0.6×10^{-4}	0.6×10^{-4}	1 01 00 dot otday
(d) Light pairs	0.5×10^{-4}	0.27×10^{-4}	
(e) Z and s -channel γ exch.	0.1×10^{-4}	0.1×10^{-4}	
(f) Up-down interference	0.1×10^{-4}	0.08×10^{-4}	
Total	1.0×10^{-4}	0.70×10^{-4}	
	et to few % a nded up is u t rounded up	s in [2]) sed as comp is used as c	compared to Ref. [1]
 (f) value not rou "Total" value not (the above three (b') missing non (e): size of O(α' (conservative so CEEX amplitude (1) S. Jadach, W. Płaczek, 	et to few % a nded up is u t rounded up e entries corr l-logarithmic 2) _{EW} corrs. to caling 0.3 × e level expor M. Skrzypek, E	is in [2]) sed as composed as composed as composed at 240 $\mathcal{O}(\alpha^2 L_e^0)$ corposed be revisited 10 ⁻⁴) & DIZI nentiation ins 3. F. L. Ward, S.	pared to Ref. [1] compared to Ref. [1] and 350 GeV as well) rection added for completeness d – available BHWIDE ET (switches, at higher energy) strumental (KKMC style) ? A. Yost, <i>Phys. Lett. B</i> 790 (2019) 314
 (f) value not rou "Total" value not (the above three (b') missing non (e): size of O(α² (conservative so CEEX amplitude (1) S. Jadach, W. Płaczek, (2) ALEPH Collaboration, 	et to few % a nded up is u t rounded up e entries cor l-logarithmic $(2)_{EW}$ corrs. to caling 0.3 × e level expor M. Skrzypek, E D. Buskulic <i>et a</i>	is in [2]) sed as composed as composed as composed at 240 $\mathcal{O}(\alpha^2 L_e^0)$ corposed be revisited 10 ⁻⁴) & DIZI nentiation insection insection.	pared to Ref. [1] compared to Ref. [1] and 350 GeV as well) rection added for completeness d – available BHWIDE ET (switches, at higher energy) strumental (KKMC style) ? A. Yost, <i>Phys. Lett. B</i> 790 (2019) 314



Bhabha lumi: 0.1×10^{-4} at Z-peak? Vacuum polarisation Note: Lattice methods with Jegerlehner's results allow, in principle, (c) -> (c)/6 $\Delta \alpha_{had}(t) = \Delta \alpha_{had}(-Q_0^2)|_{lat} + [\Delta \alpha_{had}(t) - \Delta \alpha_{had}(-Q_0^2)]|_{pQCDAdler}$ Lattice results are mainly limited now by statistics (?), so if enoug computing resources are available, the 0.1×10^{-4} precision at -few GeV² may be feasible. The above is more optimistic than the 3.5 σ tension with estimates based on exp. data of R-ratio reported in arXiv: 2203.08676, 2211.11401 [hep-lat] for $\Delta \alpha_{had}^{(5)}(-Q^2)$, $Q^2 = 3 \div 7 \text{ GeV}^2$. The precision of lattice results given in the above papers is $\Delta \alpha_{had}(-5 \, GeV^2) = 0.00716 \pm 0.9 \times 10^{-4}$ – on par with R-ratio method.

Bhabha lumi: 0.1 × 10 ⁻⁴ at Z-peak?
DIZET analysis of EW corrs. done above Z-peak. At the peak different
graphs contribute ($\gamma_t \otimes Z_s$ vs $\gamma_t \otimes Z_t$), but rough idea could be valid? M. Battaglia, S. Jadach, and D. Bardin, eConf C010630 (2001) E3015
S. Jadach, "MC tools for extracting luminosity spectra. What do we need?".
https://jadach.web.cern.ch/jadach/public/LumLCslac.pdf, 2002
How big is, therefore, uncertainty of due to EW corrections? $ \sqrt{s} = \frac{1}{8000CeV} \sqrt{s} = \frac{1}{800CeV} \sqrt$
At 800 GeV $\mathcal{O}(\alpha_{EW}^2)$ contributes below 0.4 \times 10 ⁻⁴ and decreases with energy decrease (15. \times 10 ⁻⁴ at 3 TeV). Bottom line: leading α_{EW}^2 contribs may be needed BAYLOR

Bhabha lumi: 0.1×10^{-4} at Z-peak? Fermion pairs One will probably need $\mathcal{O}(\alpha)$ corrections to four fermion final state. Calculations of Denner et.al. (PLB 612(2005) 223) exist for charged current final states. Claimed physical precision (due to higher orders) at WW threshold is few×0.1% of the 4f Born. ▶ The whole pair contribution to Bhabha is $\sim 4 \times 10^{-4}$. Assuming precision of 1% for NC final states we are well below 0.1×10^{-4} target, provided t-channel multiphotons are properly resummed. Note, that above \sim 500 GeV Sudakov logs must be resummed. **Bottom line** 0.1×10^{-4} precision *a priori* not excluded BAYLOR

1 01	Forecast			
Type of correction / Error	CEPC _{Mz}	CEPC ₂₄₀		
(a) Photonic $\mathcal{O}(L_e^2 \alpha^3)$	0.08×10^{-4}	0.10×10^{-4}		
(b) Photonic $\mathcal{O}(L_e^4 \alpha^4)$	0.14×10^{-4}	0.21×10^{-4}		
(c) Vacuum polariz.	0.6×10^{-4}	1.2×10^{-4}		
(d) Light pairs	0.24×10^{-4}	0.34×10^{-4}		
(e) Z and s -channel γ exch.	0.5×10^{-4}	$1.0 \times 10^{-4(*)}$		
(f) Up-down interference	0.03×10^{-4}	0.04×10^{-4}		
Total	0.83×10^{-4}	1.62×10^{-4}		

factor applied due to reduced transfer. That number differs from the 0.1×10^{-4} used for $FCCee_{M_7}$. [1] S. Jadach, W. Płaczek, M. Skrzypek, B. F. L. Ward, S. A. Yost, *Phys. Lett. B* 790 (2019) 314 BAYLOR SUMMARY: With proper support, lumi error needs can be met.

factors were removed as compared to [1].

▶ In the lines (d), (f) and "Total" of the column "CEPC $_{M_7}$ " safety

▶ In line (e) estimate based on BHWIDE in [1] is used with a 1/2