

HL-LHC Crab Cavities

R. Calaga on behalf of HL-LHC WP4 & Collaborations

Acknowledgements: WP2, WP12, WP13, WP19...

ICHEP 2024, Prague

HL-LHC Crab Cavities

 16 Superconducting compact RF deflectors (ATLAS + CMS) to partially compensate the geometric angle of ~600 µrad and maximize the luminous region

Two Cavity Geometries

RF Dipole (ATLAS)

Double Quarter Wave (CMS)

Cavity Manufacturing challenge

Cavities made of high purity bulk Niobium (superconductor) to sustain surface fields in excess of 50 MV/m & 100 mT

Very complex shaping, welding (30+) & assembly process to reach high final shape

RF Couplers (Input, HOM)

- A 40 kW-CW fundamental power coupler feeds RF power
- 4-HOM couplers in the DQW and 2 HOM couplers in the RFD are used to achieve the strong damping required for HL-LHC

SPS-tests of Crab Cavities

Purpose: Test one module of each type (DQW & RFD) with protons, pre-requiste before HL-LHC installation

- DQW module was installed in 2018 and 5 yrs of successful operationwith several important experiments & lessons learned which are vital for HL-LHC operation
- De-installation in 2023/24 shutdown to make space for RFD module

6

SPS tests, DQW Module

 2018 installation in a special movable bypass to carry out dedicated experiments with protons

Emittance Growth (Phase & Amplitude Noise)

2022 (RF phase noise)

(N. Triantafyllou, Ph.D. thesis)

2023 (RF amp noise)

RF Dipole for SPS-tests

- The second type (RF Dipole) was jointly built by CERN & UK-STFC, completed Oct 2023
- Extensive testing including a repair in two couplers is underway before installation into the SPS this December 2024

Series Production

5 DQW cryomodules (Europe)

- Cavities + processing + helium vessels by Research Instruments (**DE**) & **CERN**
- Cold magnetic shields by UK
- HOM couplers + antennas by **CERN**
- 4 CM by UK (STFC) & 1 CM at CERN with some components from CERN
- All cavities & CM cold validation tests at CERN (and a back up at Uppsala-Sweden)

5 RFD cryomodules (North America)

- Jacketed cavities by Zanon (IT) under US-AUP
- Cold magnetic shield + HOM couplers + antennas + cold tests by US-AUP
- 5 CM by **TRIUMF-Canada** with some components by **CERN**
- CM cold validation tests at **CERN**

20 RF Systems (Asia, CERN)

- High power amplifiers (IOT)
 CERN-KEKB
- High power RF lines, circulators, loads by CERN-KEKB
- LLRF by CERN (µTCA platform)

DQW Series Cavities

Series cavities 8 built by industry (Research Instr.) & 2 by CERN

- 4 cavities completed two fully qualified with HOMs, two under final testing
- Remaining six cavities are in final stages of welding and followed up by RF testing
- The cavities once validated are cryostated jointly with UK-STFC under a collaboration agreement

Series DQW cavities

11

RF Dipole Series Cavities

- RF Dipole series cavities & some RF ancillaries are in-kind contribution from the US under AUP-program
- 2 pre-series cavities completed in industry (Zanon) and being tested, the remaining 8 cavities progressing well
- The cavities once validated are are cryostated in Canada under a collaboration agreement between CERN & TRIUMF (in-kind)

12

High Power RF (Amplifiers & Lines)

- In 2023, KEK & CERN finalized a proposal for a Japanese in kind contribution for HPRF & RF lines
- The contract with industry is being finalized with CERN following the procurement

Low Level RF developments

- New μ TCA platform (following LIU-SPS upgrade), RF over White-Rabbit (including upgrade of LHC Beam Control)
- Cavity controllers, beam control and interlock systems to designed and produced in house
- 4 Faraday cages & infrastructure (purchased in industry)

White-rabbit RF-train

Final Comments

- The HL-LHC crab cavity project is a multinational effort which resulted in several key technologies to meet the stringent requirements for HL-LHC
 - The SPS tests with protons helped understand some vital beam physics aspects & how to efficiently operate high field CCs in the CERN accelerator chain
 - Series production for HL-LHC is in full swing and expected to finish in 3 years followed by installation in the interaction regions
- The HL-LHC developments opened the door to very high field deflecting/crab cavities which are now an essential technology for many future accelerators (colliders, light sources, etc..)

Timeline

RFD CM SPS-tests

2 prototype cryomodules for beam tests (DQW & RFD)

5 DQW + 5 RFD Series modules

CERI

Impedance & Mitigation

- The large impedance at the fundamental mode and HOMs are a concern for transverse stability
 - To reduce the impedance, a direct RF feedback with a gain of 150 and a β-comb filter to gain an additional x10 will be used
 - Several HOM couplers are used for very strong damping to stay within impedance budget
- Experiments in the SPS were valuable to understand the impact and benchmark projections for HL-LHC

SPS Measurements

HOM Measurements

- Impedance measurements at 2K on the cryomodule to confirm to be within specification
- Measurements are cross checked at different stages between vertical tests & after cryostating w.r.t the specified impedance budget from beam dynamics requirements

