Final Cooling with Thick Wedges for a Muon Collider

Daniel Fu

Diktys Stratakis, David Neuffer, Anthony Badea, Karri DiPetrillo

ICHEP, 7/19/2024

PHYSICAL SCIENCES DIVISION

What is a Muon Collider?

- Proposed particle accelerator colliding muons and antimuons
- Current particle accelerators use protons or electrons
 - Electrons lose energy to radiation harder to reach high energy
 - Protons are composite particles collisions more complex
- Muons are high mass, elementary particles best of both worlds
- Potential to reach new energy scale (10 TeV) with smaller footprint

What is a Muon Collider?

Muon production

- Muons are unstable, must produce, accelerate, and collide them before they decay
- Proton-target collisions produce pions, which decay into muons

Muon production

Emittance and Cooling

- Initially high variance in muon position and momentum – measured by *emittance*
- Emittance measured in longitudinal (parallel to beam) and transverse (perpendicular to beam) axes
- Reducing emittance is important for maximizing luminosity; this process is known as *cooling*

Emittance = area of distribution in phase-space

Ionization Cooling

- Used because of short lifetime of muon
- Beam passed through matter, loses energy through ionization
- Momentum reduced in all axes (transverse and longitudinal)
- Beam is then reaccelerated with RF cavity
- Ends with greater proportion of momentum in longitudinal direction, achieving cooling

Final Cooling

- Cooling occurs in several stages
- Initial stages reduce emittance in all axes (6D cooling)
- Final cooling reduces transverse emittance, longitudinal emittance allowed to grow (4D cooling)
- Target emittance around 30 μm transverse, 100 mm longitudinal

Problems with Baseline Final Cooling

- Multiple scattering limits emittance reduction – equilibrium point dependent on momentum and beam width (β_t)
- High field (40-50 T) solenoids required to focus beam – impractical to construct and operate
- Low momentum required drastically increases longitudinal emittance
- Motivates alternate final cooling methods

 $\varepsilon_{N,\text{eq}} \cong \frac{\beta_t E_s^2}{2\beta mc^2 L_R (dE/ds)}$

$$\frac{\beta_t}{\beta_t}(m) \cong \frac{2P_{\mu}(GeV/c)}{0.3B(T)}$$

Problems with Baseline Final Cooling

Final Cooling with Thick Wedges

- Conceptual final cooling design proposed by Neuffer in 1612.08960
- Utilizes wedge-shaped absorbers to achieve emittance exchange
- Alternative means of emittance exchange lower field requirements

Wedge Cooling Mechanism

transverse emittance but higher spread in longitudinal momentum

Wedge Cooling Mechanism

Wedge Cooling Mechanism

Momentum spread must be reduced before second wedge

Phase Rotation

- Particles travel through drift channel correlation between z and Pz
- RF cavity applies time-varying E-field decelerates faster muons and accelerates slower muons
- Decreases longitudinal momentum spread at the cost of increasing longitudinal position spread (longitudinal emittance unchanged)

Simulation and Optimization

- Simulated using G4Beamline software
- Optimization conducted using Nelder-Mead method (scipy)
- Optimized 1st wedge, drift length, RF cavity, and 2nd wedge sequentially

Caveats and Assumptions

- Magnets for focusing, beam transport, and bending were not designed – idealized versions assumed
 - Required magnet strengths not precisely known
- Only longitudinal behavior was considered in the RF cavity
- Losses from muon decays and inter-particle interactions ignored

<u>Results</u>

- Optimized conceptual design
- Achieved lower transverse emittance (x) than previous best results (x)
- Demonstrated cooling from first and second wedges

Next Steps

- Improve simulation and optimization
 - Include magnets in simulation to reduce assumptions
 - Global optimization using Bayesian methods and surrogate modelling
 - Validate results v.s. particle count and other parameters
- Combine wedges with other cooling methods
- Demonstrators for wedge cooling technology

Ryan Michaud

Thank you for listening!

Questions?

Backup slides

Baseline Graphs

