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PSI’s muon beams

590 MeV proton 
ring cyclotron 

1.4 MW

• PSI delivers the most intense continuous (DC) low momentum (surface) muon beam in the world up to few x 108  mu/s (28 MeV/c, 
polarised beam (Intensity Frontiers)
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MEGII / Mu3e Experimental area

Proton RF ~ 50 MHz 
“DC” muon beam

“Muon” Target “E” 
production

4.6· 108 µ+/s 

1.4· 108 µ+/s 



HiMB motivations 
• Current beam intensity: Up to  5 x 108 μ+/s (the highest intensity DC μ+ beam) 

• HiMB’s Aim: O(1010 muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam  
• Time schedule: Long Shut-Down 2027-2028  

• Next generation cLFV experiments require higher muon rates 
• New opportunities for future muon (particle physics) based experiments (i.e. the new muEDM project@PSI) 
• New opportunities for μSR experiments 

• Different experiments demand for a variety of beam characteristics: 
• DC vs pulsed 
• Momentum depends on applications: stopped beams require low momenta 

• Here focus on DC low momenta muon beams 

• Maintain PSI leadership in DC low momentum high intensity muon beams

cLFV

muEDM
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PSI’s muon beams
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• Muon beams: secondary beam lines 
• Low-energy muon beam lines typically tuned 

to surface-μ+ at  ~ 28 MeV/c 
• Note: surface-μ —> polarised positively 

charged muons (spin antiparallel to the 
momentum) 

• Contribution from cloud muons at similar 
momentum about 100x smaller 

• Negative muons only available as cloud muons

π+

μ+

surface muons 
stopped pion decay

x

π+/-

μ+/-

cloud muons 
pion decay-in-flight

protons

𝝅+ 𝛎𝝁+

Spin vector

Momentum vector



How the beam intensity can be increased…
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How the beam intensity can be increased…
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How the beam intensity can be increased…
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1. “at the source”
2. “at the target production”

3. “at the beam line”

4. “at the beam dump”



How the beam intensity can be increased…
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Always looking for —> Relative “simple”, “easy”, “fast” and “cheap” solutions



At the target:
• Optimised Target: Alternative materials and/or different geometry 

• Search for high pion yield materials -> higher muon yield 
• Either increasing the surface volume (surface area times acceptance depth) or the pion stop density near the surface
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At the target:
• Optimised Target: Alternative materials and/or different geometry 

• Search for high pion yield materials -> higher muon yield 
• Either increasing the surface volume (surface area times acceptance depth) or the pion stop density near the surface

13

• Several materials have pion yields > 2x Carbon 
• Relative muon yield favours low-Z materials, but difficult to construct as a target 
• B4C and Be2C show 10-15% gain

Forked

x 1.4x 1.1

Standard Grooved Trapezoidal Forked Slanted

x1 x1.1 x1.4 x1.5

Note: Each geometry 
was required to preserve, 
as best as possible, the 
proton beam 
characteristics down-
stream of the target 
station (spallation neutron 
source requirement)



Slanted target: First test at the end of 2019

+60%

+30%
+30%
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New Target Old TargetGraphite Graphite 

• Expect 30-60 % enhancement 
• Measurements performed in three directions (forward / backward / sideways direction) 
• Increased muon yield CONFIRMED  
• Target E as slanted target configuration since second part of 2020  
• Target optimisation only, corresponding to 50%, would corresponds to effectively raising the proton beam 

power at PSI by 650 kW, equivalent to a beam power of almost 2 MW 
+35%



The HiMB target: TgH
• Final position for the HiMB target: “Present" Target M location 
• ~90° extraction to existing experimental areas 
• Large phase space acceptance solenoidal channel

Target M



Along the beam line
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500 mm 250 mm

solenoid
500 mm aperture

500 mm250 mm

solenoid
500 mm aperturep

• Two normal-conducting, radiation-hard solenoids close 
to target to capture surface muons 
• Field at target ~0.1 T 
• Magnetic field up to 0.45 T 
• Graded field solenoid to improve the muon 

collection: Stronger at capture side

• Optimised beam line: increased capture and transmission



Along the beam line

• Optimised beam line: increased capture and transmission
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• Two normal-conducting, radiation-hard solenoids close 
to target to capture surface muons 
• Field at target ~0.1 T 
• Magnetic field up to 0.45 T 
• Graded field solenoid to improve the muon 

collection: Stronger at capture side



Along the beam line
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• A quasi “pure” solenoidal beam line to increase the 
transmission

• Optimised beam line: increased capture and transmission



MUH2 and MUH3 beamlines
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• ~90° extraction with first bend in upstream 
direction 

• MUH2 for particle physics 
• MUH3 for muSR research [H. Luetkens’s talk]



Example: Expected performance of MUH2
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• Transmitted rates to the end of the beamline at 2.4 mA proton current 
• ~1.0 x1010 μ+/s at 28 MeV/c 
• Beam spot final focus: 𝜎x  = 𝜎y ~ 40 mm 
• Positron contamination at highest muon rate 20-30% (can be further reduced at a cost of a small loss in muon rate) 

• Robust results using different optimisation strategies 



At the target + along the beam line
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• Two normal-conducting, radiation-hard solenoids close 
to target to capture surface muons 
• Central field of solenoids ~0.35 T 
• Field at target ~0.1 T

• A quasi “pure” solenoidal beam line to increase the 
transmission

HIMB project at PSI. Aim: O(1010 muon/s); Surface (positive) muon 
beam (p = 28 MeV/c); DC beam 

• Optimised beam line: increased capture and transmission



The muCool project at PSI
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• Aim: low energy high-brightness muon beam 
• Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm 
• Increase in brightness by a factor 1010 with an efficiency of O(10-4)

Standard/secondary μ+ beam 
• 𝛔 = 10 mm 
• E = 4 MeV 
• Continuous 

muCool/tertiary μ+ beam 
• 𝛔 < 1mm 
• E < eV 
• Tagged 

D. Taqqu, PRL 97 (2006) 194801



Trajectories in E and B field

=

gas  =+

In gas: collisions 
with frequency fcol 
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Working principle: 1st Stage 
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Working principle: 2nd Stage 
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Summary: The muCool project at PSI
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• Aim: low energy high-brightness muon beam 
• Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm 
• Increase in brightness by a factor 1010 with an efficiency of O(10-4) 
• Longitudinal and transverse compression (1st stage + 2nd stage): experimentally proved  
• Next Step: Extraction into vacuum

Detector 1

Detector 2
In gas: collisions 

with frequency fcol 

tan𝜃 ∝ 𝑓𝑐𝑜𝑙

Transverse 
Compression

Longitudinal 
Compression

Longitudinal+ 
Transverse 
Compression



Where we are now:
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Where we want to be:

• Extraction in vacuum: Control of the gas density and flow crucial 

• Final settings: Found and to be tested by the end of the year



Outlook

• Next generation on muon based experiments require higher muon rates 
• New opportunities for future muon (particle physics) based experiments 
• New opportunities for μSR experiments 

• Different experiments demand for a variety of beam characteristics: 
• DC vs pulsed 
• Momentum depends on applications: stopped beams require low momenta 
• Phase space 

• Beam with different characteristics are/will be available worldwide
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Credits and acknowledgments 
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• The IMPACT project at PSI 

• The muCool project at PSI 

• The MEGII collaboration 

• The Mu3e collaboration  

• The muEDM collaboration 

• …

Thanks for your attention !



TgE: A few details
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Momentum spectrum of the relevant particles produced at TgH
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Muon beams worldwide summary
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A quick departure: The HiMB project at the beam dump
• Source simulation (below safety window):  

9 x 1010 surface-μ+/s @ 1.7 mA Ip 
• Profit from stopping of full beam 
• Residual proton beam (~1 MW) dumped on SINQ 

• Replace existing quadrupoles with solenoids: 
• Preserve proton beam footprint  
• Capture backward travelling surface muons 

• Extract muons in Dipole fringe field 
• Backward travelling pions stopped in beam window 

• Capturing turned out to be difficult : 
• Large phase space (divergence & ‘source‘ extent) 
• Capture solenoid aperture needed to be increased, 

but constrained by moderator tank 
• High radiation level close to target 

• Due these constraints and after several iterations 
with different capturing elements: 
• Not enough captures muons to make an 

high intensity beam  
• Alternative solution: HiMB @ EH

p

π+

μ+

SINQ spallation target
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MuSIC’s muon beams

Ring
Cyclotron
~392MeV
(variable)
1.1uA
proton,
(0.4kW)

MuSIC
M1 Beam line

MUSE@ J-PARC
Pulsed muon source

MuSIC @ RCNP
DC muon source

• Aim: O(108 muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam 

35



Slanted target: Impact

+60%

+30%
+30%
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New Target Old Target

Graphite Graphite 

• Impact of the optimised target: 
• Put into perspective the target optimisation only, corresponding to 50% of muon beam intensity gain, would 

corresponds to effectively raising the proton beam power at PSI by 650 kW, equivalent to a beam power of 
almost 2 MW without the additional complications such ad increased energy and radiation deposition into 
the target and its surroundings 

+35%


