

Physics Program for the Super Tau-Charm Facility (STCF)

Haiping Peng University of Science and Technology of China On behalf of STCF working group

Challenges of the SM

The SM is well-tested, however, reminds several fundamental questions :

- Color confinement : structure of nuclear, formation of colorless hadrons...
- CP Violation : matter-antimatter asymmetry of universe
- Mass hierarchy, Dark matter, Number of flavors, ...

HEP science drives (Snowmass 2021) :

- Use Higgs boson as a tool for discovery
- Pursue the physics associated with neutrino mass
- Identify the new physics of Dark Matter
- Understand cosmic acceleration :Dark Energy and inflation
- Explore the unknown : new particles, interactions and physical principles

• Flavor physics as a tool for discovery

Physics at the Tau-Charm Energy Region

Unique Features *τ***-c facilities:**

- Transition region between perturbative and non-perturbative QCD
- Threshold effects of pair production of hadrons and τ leptons
- Rich resonance structures, large production X-sec for charmonium(-like) states and exotics

- Hadron form factors
- *Y*(2170) resonance
- Mutltiquark states with s quark
- R value / g-2 related

- Light hadron spectroscopy
- Gluonic and exotic states
- Processes of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- *XYZ* particles
- Physics with D mesons
- f_D and f_{D_s}
- $D^0 \overline{D}^0$ mixing
- Charm baryons

- Complete *XYZ* family
- Hidden-charm pentaquarks
- Search for di-charmonium states
- More charmed baryons
- Hadron fragmentation

The Super Tau-Charm Facility (STCF)

Physics Opportunity : QCD Confinement

- QCD confinement in low-energy region and its non-perturbative feature are the remaining challenge
- The effects are becoming the **bottleneck** in the precision measurement and new physics searching
- The inner structure of nucleon, the spectroscopy of hadron and exotic, fragmentation function are the nature studying platforms

STCF Unique Advantages :

- Perturbative and non-Perturbative transition energy region
- Threshold production of baryon, hyperon
- Large cross section for charmmonium

Electromagnetic form factors (EMFFs)

EMFFs are fundamental properties, directly connected to charge and current distributions of the nucleon

Remaining questions of TL-EMFFs:

- Step-like behavior of production cross section, indication of near-threshold singularity
- Damped oscillation distribution after subtracting modified dipole in effective FF
- Damped oscillation distribution of $|G_E/G_M|$ ratio.
- Evolution of the phase between G_E and G_M
 Current status

STCF prospect for TL-EMFFs:

- Improve cross section measurement with 1-2 order
- Reveal the near-threshold cross section singularity and mystery of $G_{\rm E}$ and $G_{\rm M}$

Hadron Spectroscopy and Exotic

A unique territory for the QCD confinement

A Charmonium(-like) factory (per year):

 \sim 3T J/ ψ , 0.6T ψ (3686), 1B Y(4230), 100M Z_c(3900) and 5M X(3872)

Physics opportunities :

- Energy dependent structures of Z_{c(s)}
- More XYZ states \rightarrow spectroscopy
- Missing charmonium states and their transitions
- Traces of glueballs and hybrid states

STCF has an absolute advantage in studying hadron spectroscopy and exotic states, and is expected to achieve significant breakthroughs

Physics Opportunity : CP Violation

- CPV observed in K, B, D mesons, all consistent with CKM theory in SM
- Baryon asymmetry of the universe indicates the existence of non-SM CPV sources
- STCF is capable of searching for CPV in hyperon and τ lepton, as well as CPT violation in Kaon with high sensitivity

Unique advantages :

• Quantum correlated, large statistics, clear background

CPV in Hyperon Decay

- BESIII has observed the polarization of hyperon in the J/ ψ decay, and carried out CPV measurement by performing the jointly angle distribution analysis
- The sensitivity to test CPV in the J/ ψ decay is found to be much improved due to the quantum correlation between hyperon pair, and the polarization of hyperon CP test $A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$

PRL 129, 131801 (2022)

CPV in Hyperon Decay

- STCF has 10^{12} J/ ψ per year, corresponding 10^9 hyperon pair, the CPV test sensitivity challenge SM prediction 10^{-4} ~ 10^{-5}
- Polarized electron can significant improve the test sensitivity P

$$P_{\mathbf{A}} = \frac{\gamma_{\psi} P_e \sin \theta \hat{x}_1 - \beta_{\psi} \sin \theta \cos \theta \hat{y}_1 - (1 + \alpha_{\psi}) P_e \cos \theta \hat{z}_1}{1 + \alpha_{\psi} \cos^2 \theta}.$$

Precision Measurements and Rare Decays

STCF physics opportunities :

- improve the current precisions of many important measurements by ~1 order of magnitude
- enhance sensitivities to various rare or forbidden decays by ~2 orders of magnitude

Beyond What I can cover

K0

M. Achasov, et al., STCF conceptual design report (Volume 1): Physics & detector, Front. Phys. 19(1), 14701 (2024)

Key words / main topics of STCF physics CDR citations

		CP in charmed b	baryon		
	Near-three	shold resonance	9		
	EMFFs	Triangle sing	gularity 1	au EDM	
D	o _s * radiative decay	Hyperon-	Nucleus Sca	attering	
CNC	Light-cone dis	tribution amplit	tudes ^{Mil}	licharged pa	articles
-K0bar	Neutral meson	mixing Spir	a 3/2 polariz	zation QCD su	ım rules
Muon g	g-2 and $\alpha(M_z^2)$ Λ	$-\overline{\Lambda}$ oscillation	Axion-li	ke particle	cLFV
ully ch	arm tetraquarks	SU(2) _L -sing	let vector-li	ke fermion	partners
ΔS	= 2 Nonleptonic	hyperon decay	Hyperon E	DM X(40 ⁻	(4)
Pro	oton charge radius a ₀ (1710)	S Coupled	-channel ef	fect	
		invisible de	cay of J/psi		

Project Promotion

Anhui Province endorse the key technology R&D project, and offer funds 364M RMB

Conferences/Workshops

Domestic) STCF Workshops

Time	Place	Content	
2018.10	Hengyang (USC)	STCF	
2019.03	Beijing (UCAS)	STCF: Physics	
2019.07	Hefei (USTC)	STCF: Accelerator	
2019.08	Hefei (USTC)	STCF: Phys. & simulations	
2019.11	Beijing (UCAS)	STCF: CDR	
2020.08	Hefei (USTC)	STCF: From CDR to TDR	
2022.12	Guangzhou (SYSU)	STCF: R&D kick-off	
2023.07	Zhengzhou (ZZU)	STCF: Collaboration	
2024.07	Lanzhou (LZU)	STCF: 15 th -five-year plan	

STCF Project Development Meetings

Time	Place	Meetings
2022.04	Hefei (USTC)	STCF Key Technology R&D Project Demonstration Meeting
2023.08	Hefei (USTC)	STCF Key Technology R&D Project Kick-off Meeting
2023.12	Hefei (USTC)	STCF Key Technology R&D Project Budget Review Meeting
2024.01	Hefei (USTC)	STCF 1 st International Advisory Committee Meeting
2024.05	Hefei (USTC)	STCF 1 st National Consultative Committee Meeting

STCF workshop 2022, online

STCF workshop 2023, Zhengzhou

STCF Key Technology R&D Project Kick-off Meeting, Hefei, 2023

International Future Tau-Charm Facility Workshops

Time	Place	Content	
2015.01	Hefei, China	International Workshop focused on Super tau-Charm Facility in China	
2018.03	Beijing, China	International Workshop focused on Super tau-Charm Facility in China	
2018.05	Novosibirsk, Russia	International Workshop focused on Super tau-Charm Facility in Russia	
2018.12	Paris, France	aris, France 1 st FTCF (Joint International Workshop)	
2019.08	Moscow, Russia	2 nd FTCF	
2020.11	Online, China	3 rd FTCF	
2021.11	Online, Russia	4 th FTCF	
2024.01	Hefei, China	5 th FTCF	
2024.11	Guangzhou, China	6 th FTCF	

The 2024 International Workshop on Future Tau Charm Facilities(FTCF2024)

Site : Hefei, Anhui Province

Hefei Comprehensive National Science Center "Future Big Science City", Hefei, Anhui Province $\underbrace{Hefei Advanced Light Facility}_{(HALF) - under construction}$

USTC

Thetei Xingiao Iternational Airport

- Funded R&D : 364 Million CNY by the Anhui government
- Construction budget : 4.5 Billion CNY
- Geological prospecting, civil engineering design are ongoing

Tentative Project Schedule

Key Technology R&D – Research team

Key Technology R&D Progress

Summary

- The STCF has unique features, making it a viable medium-term HEP project in China with excellent value-to-cost ratio and great physics potential for breakthroughs
- The STCF faces challenges in key technologies of accelerator, detector, electronics etc, the R&D project is ongoing with strong backing from local governments. All the key technologies will be overcame through various ways within 2-3 years
- Aiming to submit a proposal to the central government in 2025 for inclusion in the 15th five-year plan (2026-2030)
- Expanding international collaboration and exploring synergies with other projects are crucial. All forms of collaboration are opened.

The 6th International Workshop on Future Tau Charm Facilities (FTCF2024-Guangzhou)

- The 6th International Workshop on Future Tau Charm Facilities (FTCF2024-Guangzhou)
- will be hosted by Sun Yat-sen University (SYSU), in Guangzhou, China, Nov. 17 21, 2024

https://indico.pnp.ustc.edu.cn/event/1948/

Future e⁺e⁻ Collider Factory

Energy ranges of high luminosity e⁺e⁻ colliders (factories) correspond to production thresholds of known particles

Ultimate performance (precision) is determined by luminosity and detector quality

Electromagnetic form factors (EMFFs)

- EMFFs are fundamental properties, directly connected to charge and current distributions of the nucleon
- Various models describe TLFF in non-perturbative region: ChEFT, VMD, relativistic CQM, parton model, pQCD etc.
- Dispersion analysis provide a coherent framework for the joint interpretation of SL and TL EMFFs over the entire q² regions

Remaining questions of TL-EMFFs:

- Step-like behavior of production cross section, indication of near-threshold singularity.
- Damped oscillation distribution after subtracting modified dipole in effective FF.
- Damped oscillation distribution of $|G_E/G_M|$ ratio.
- Evolution of the phase between G_E and G_M .
- The asymptotic behavior of TL-EMFFs

STCF prospect for TL-EMFFs:

- Improve cross section measurement with 1-2 order
- Reveal the near-threshold cross section singularity and mystery of G_E and G_M.

10 **=**

Unique data sample

EDM in Hyperon

Detailed dynamics in J/ψ decay to hyperon pair can been studied:

µ: magnetic dipole momentd: electric dipole moment

Non-zero EDM will violate P and Tsymmetry: T violation $\leftrightarrow CP$ violation, if CPT holds $\mathcal{A} = \epsilon_{\mu}(\lambda)\bar{u}(\lambda_{1})\left(\boldsymbol{F}_{\boldsymbol{V}}\boldsymbol{\gamma}^{\mu} + \frac{i}{2M_{\Lambda}}\sigma^{\mu\nu}q_{\nu}\boldsymbol{H}_{\sigma} + \boldsymbol{\gamma}^{\mu}\boldsymbol{\gamma}^{5}\boldsymbol{F}_{A} + \sigma^{\mu\nu}\boldsymbol{\gamma}^{5}q_{\nu}\boldsymbol{H}_{T}\right)\boldsymbol{\nu}(\lambda_{2})$

Systematic measurement of the EDMs of the hyperon family!

X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

Fragmentation Function (FF)

- FFs describes the processes of quarks/gluon hadronization, is nonperturbative process, can not be calculated theoretically
- To accurately extract proton Parton Distribution Functions (PDFs), more precise FFs are required
- e⁺e⁻ collider experiment provides the cleanest input for FFs fitting.
 With polarized electron beam, more FFs can be studied

STCF prospects :

- will provide the most precise FFs in q² range 4-50
 GeV² with multi-dimensional binning
- Precise test the universality of FFs in the different processes, and its evolution with q²
- Provide important inputs for EIC, EicC, JLab experiments