Tau lepton identification in displaced topologies using machine learning at CMS

ICHEP 2024 Prague, 17-24 July

Mykyta Shchedrolosiev¹ on behalf of CMS Collaboration

¹Deutsches Elektronen-Synchrotron

Contacts: cms-phys-conveners-TAU@cern.ch

Displaced taus at CMS

 Displaced τ's expected in many extensions of SM: e.g: In Gauge-Mediated Supersymmetry Breaking models³, staus can have macroscopic lifetime:

 $c\tau \approx 100 \,\mu\mathrm{m} \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}}}\right)^5 \left(\frac{\sqrt{F}}{100 \text{ TeV}}\right)^4$

=> Displaced au signatures with $c au_0$ 100 μ m-1m

[1] <u>EUI. PHys. J. C 62, 155 (2022)</u>, [2] <u>PHysRevD</u> [3] JHEP04(2016)056

Hadronic taus at CMS

- 1. **Reconstruction** hadron plus strip algorithm¹ (HPS):
 - a. Reconstruction is seeded by anti-kt AK4 jet
 - b. π^0 is reconstructed using dynamic $\eta \phi$ window in ECAL (strip)
 - c. Require one or three π^{\pm}
 - d. Mass constraints

ICHEP 2024 poster by Paola Mastrapasqua:

For more information Detector Performance Summary:

2. Identification (DeepTau¹):

a. Signature of jets originating from quarks/gluons ($\tau_{\rm jet}$), electrons ($\tau_{\rm e}$) and muons ($\tau_{\rm u}$) can fake genuine hadronic tau decays ($\tau_{\rm h}$) -> NN-based discriminator

Displaced taus at CMS

Standard hadron-plus-strip (HPS) reconstruction¹ is not designed for displaced signatures:

Displaced tau tagger

- Each variable is standardized (mapped and cropped on the interval [-1, +1])
- Classes are balanced over p_{τ} and η •
- The current model has approximately **100K trainable parameters (TP)**

Particles' features

(24 features)

2

Softmax

 $p(\tau_h)$

Performance in simulation

- The tau ID efficiency is estimated from **stau MC**
- The jet misidentification probability is estimated from top-antitop MC
- Signal efficiencies are shown for various WPs: Loose (>0.05), Medium (>0.7), Tight (>0.99), VTight (>0.997), VVTight (>0.9992)

$$P(t)=e^{rac{-t}{(\gamma au)}}$$

Performance in simulation

Performance in simulation

Endcap region:

Efficiency and misidentification rate of the DisTau algorithm for the different working points:

Tagger validation for background jets

- Validation in Drell-Yan (DY + jets) with Z→µµ enriched region for background-like jets
- Selection requirements:
 - requiring two opposite sign, well-identified and isolated muons
 - total mass being consistent with **Z-boson mass** (91.2 GeV)
 - no additional leptons or b-tagged jets in the events.
 - at least two additional AK4 jets
- DY+jets purity > 96%.

Tagger validation for background jets

- Tagger validation for background jets
- Score is shown for p_T-leading and subleading jets
- Overall shape of the data is well modeled

Tagger validation for genuine tau

- SM processes do not exhibit signal-like displaced taus
- Prompt hadronic taus → suitable proxy
- Use DY with $Z \rightarrow \tau \tau \rightarrow \mu \tau_{h}$
- Selection requirements:
 - requiring opposite sign muon and $au_{
 m h}$
 - total mass being consistent with visible Z-boson mass
- $Z \rightarrow \mu \tau_h$ process purity > 86%

Tagger validation for genuine hadronic tau

- Tagger validation for hadronic taus
- Tagger score for the jet matched to the reconstructed $au_{
 m h}$ within Δ R<0.3
- Overall shape of the data is well modeled

Summary

- Standard HPS Algorithm: Not suitable for displaced τ_h topologies, designed for close-to-vertex τ_h leptons.
- **DisTauTag Algorithm: A new neural-network-based tagger** specifically for displaced tau leptons based on AK4 jets.
- Performance Evaluation: Utilizes simulated long-lived τ sleptons; The tagger performance demonstrates promising rejection efficiency of signal versus background.
- Validation: Tagger behavior in 2018 data is well-modelled, for both background and signal-like jets.

More information on our new algorithm available at CMS <u>Detector Performance Summary</u>:

Thank you for your attention! Děkuji vám za pozornost!

References

- Tumasyan, A., Adam, W., Andrejkovic, J.W. et al. (2022). "Search for Long-lived Particles Decaying to Leptons with Large Impact Parameter in Proton-Proton Collisions at √s = 13 TeV." European Physical Journal C, 82: 153. DOI: 10.1140/epjc/s10052-022-10027-3.
- **CMS Collaboration (2023).** "Search for Direct Pair Production of Supersymmetric Partners of Tau Leptons in the Final State with Two Hadronically Decaying Tau Leptons and Missing Transverse Momentum in Proton-Proton Collisions at √s=13 TeV." Physical Review D, 108(012011). Published 19 July 2023. <u>Link to article</u>.
- **CMS Collaboration (2022).** "Identification of Hadronic Tau Lepton Decays Using a Deep Neural Network." Journal of Instrumentation, 17(07): P07023. DOI: <u>10.1088/1748-0221/17/07/P07023</u>.
- **CMS Collaboration.** "Identification of Hadronic Tau Lepton Decays Using a Deep Neural Network." Journal of Instrumentation, 17(07): P07023. DOI: 10.1088/1748-0221/17/07/P07023. (2022). Link to article.
- **Qu, Huilin & Gouskos, Loukas**, "Jet tagging via particle clouds," Physical Review D, vol. 101, no. 5, 056019 (2020), doi: <u>10.1103/physrevd.101.056019</u>. Published by the American Physical Society (APS). March 2020.
- **CMS Collaboration**, "Particle-flow reconstruction and global event description with the CMS detector," JINST 12, no. 10, P10003 (2017), doi: 10.1088/1748-0221/12/10/P10003. <u>Link to article</u>. Available at: <u>CMS Public Pages</u>.
- Cacciari, M., Salam, G. P., & Soyez, G. (2008). "The anti-kt jet clustering algorithm," Journal of High Energy Physics, vol. 2008, no. 04, p. 063. DOI: <u>10.1088/1126-6708/2008/04/063</u>. April 2008.
- **CMS Collaboration**, "Pileup mitigation at CMS in 13 TeV data," JINST 15, no. 09, P09018 (2020), doi: 10.1088/1748-0221/15/09/P09018. <u>Link to article</u>. Available at: <u>CMS Public Pages</u>.

