

Vassily Kandinsky, Several Circles, 1926

Flavour Tagging with Graph Neural Network at ATLAS

19th July 2024

Author

Maxence DRAGUET

Supervisor

Daniela BORTOLETTO

FOR

On behalf of the ATLAS Experiment

maxence.draguet@physics.ox.ac.uk

INTRODUCTION

ATLAS event display of a Higgs boson decaying to two b-quarks with an associated W boson decaying into a muon and a neutrino

ATLAS Collaboration relies on heavy-flavour jets classifiers

Used in many analyses: $H \rightarrow b\overline{b}, H \rightarrow c\overline{c}, di-Higgs, ...$

These classifiers are **ML TAGGERS**

Example: $VH \rightarrow b\overline{b} / c\overline{c}$ presented this morning

JET FLAVOUR TAGGING CONTINUOUS EVOLUTION \rightarrow BDT \rightarrow Deep Network \rightarrow RNN \rightarrow DeepSet \rightarrow Graph Attention \rightarrow Transformer

Mission Continuously improve the performance of the ATLAS tagger for {*b*, *c*, *light**, *τ***} jet discrimination

ight = u, d, s, gluon hadronic τ decays resemble c-jets

rejection = 1 / miss-classification efficiency

JET FLAVOUR TAGGING CONTINUOUS EVOLUTION

→ BDT → Deep Network → RNN → DeepSet → Graph Attention → Transformer

Inputs Tracks & jet

Outputs Per-flavour* probabilities & discriminant

Trained on simulated data Calibrated on real data

*{*b*, *c*, *light*, *τ*}

rejection = 1 / miss-classification efficiency

JET FLAVOUR TAGGING

New design adopted by ATLAS for GN1 & GN2

Integrated

GN2

GN1

One large network to rule them all, multitask, multimodal, agile and easy to update, fully leveraging Deep Learning

Large Multimodal Multitask Transformer Model

Multimodal Combines multiple physics input types

Architecture Single network with SOTA performance Multitask Per-flavour probabilities + auxiliary objectives

GN2 *Inputs*

Multimodal Tracks + Jet Variables

Tracks

- Track parameters
- Uncertainties
- Impact parameters

Jet

- $p_T \& \eta$
- Resampled / flavour

192,000,000 simulated jets for training Thanks to new preprocessing software **Stabilising architecture** choices: Layer Normalisation Dropout

GN2 Architecture

Neural network for combined representations embedding

Transformer Encoder for conditional track representation Auxiliary tasks for expert knowledge distillation

GN2 Loss

GN2 *Performance*

Significant improvement with GN2

Left working point corresponds to right one

GN2 Performance

Significant improvement with GN2

GN2 Aftermath

tĪ

Z'

GN2X

+ HL-LHC forecast, application to other part of the Collaboration, ...

c-jet mistag rate

0.16

0.12

0.10

0.08

1.05

1.00

0.95

0.90

Ratio

GN models bring a remarkable improvement to ATLAS **Ongoing Calibration**

MC Dependence

✓ Overall generator dependence ~ O(3-6%)

Good agreement in the bulk

Embedding Width

64

GN models bring a remarkable improvement to ATLAS

Ongoing Hyperparameters Tuning

➢ HPO on the smaller model → faster training → better coverage
➢ Zero-shot transfer: best HP small model = best HP large model

Embedding Width

Real Deployment

LR Scheduler Optimisation: LR Max per LR Initial

HPO matters

ROC curves on $t\overline{t}$

Vassily Kandinsky, Several Circles, 1926

Thank you for your attention!

19th July 2024

Author

Supervisor

Maxence DRAGUET

Daniela BORTOLETTO

On behalf of the ATLAS Experiment

maxence.draguet@physics.ox.ac.uk 🖂

FOR

Vassily Kandinsky, Several Circles, 1926

René Magritte – Le Retour

Δ

K

Ρ

Monet – Les Coquelicots

René Magritte – Souvenir de Voyage

Piet Mondriaan – Composition with Red, Yellow, and Blue

GN2 Inputs

14

Jet Input	Description
p_{T}	Jet transverse momentum
η	Signed jet pseudorapidity
Track Input	Description
q/p	Track charge divided by momentum (measure of curvature)
dη	Pseudorapidity of the track, relative to the jet η
$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the jet ϕ
d_0	Closest distance from the track to the PV in the longitudinal plane
$z_0 \sin \theta$	Closest distance from the track to the PV in the transverse plane
$\sigma(q/p)$	Uncertainty on q/p
$\sigma(heta)$	Uncertainty on track polar angle θ
$\sigma(\phi)$	Uncertainty on track azimuthal angle ϕ
$s(d_0)$	Lifetime signed transverse IP significance
$s(z_0)$	Lifetime signed longitudinal IP significance
nPixHits	Number of pixel hits
nSCTHits	Number of SCT hits
nIBLHits	Number of IBL hits
nBLHits	Number of B-layer hits
nIBLShared	Number of shared IBL hits
nIBLSplit	Number of split IBL hits
nPixShared	Number of shared pixel hits
nPixSplit	Number of split pixel hits
nSCTShared	Number of shared SCT hits
nPixHoles	Number of pixel holes
nSCTHoles	Number of SCT holes
leptonID	Indicates if track was used in the reconstruction of an electron or muon (only for GN1 Lep)

GN2 Track Selection

Parameter	Selection
pт	> 500 MeV
$ d_0 $	< 3.5 mm
$ z_0 \sin \theta $	< 5 mm
Silicon hits	≥ 8
Shared silicon hits	< 2
Silicon holes	< 3
Pixel holes	< 2

"Quality selections applied to tracks, where d_0 is the transverse IP of the track, z_0 is the longitudinal IP with respect to the PV and θ is the track polar angle. Shared hits are hits used on multiple tracks which have not been classified as split by the cluster-splitting neural networks. Shared hits on pixel layers are given a weight of 1, while shared hits in the SCT are given a weight of 0.5. A hole is a missing hit, where one is expected, on a layer between two other hits on a track".

GN2 *MC Dependency*

C-jets

Light-jets

Maxence Draguet I maxence.draguet@physics.ox.ac.uk I ICHEP Flavour Tagging with GNN

GN2 Data / MC

"Tag and probe" event selection: tag jet must pass 85% b-eff
Simulations are scaled to match the total yield in data

- 2-lepton 2-jet selection, 1
 lepton trigger
- Opposite sign electron and muon
- Invariant mass of each leptonjet pair < 175 GeV
- Tagger discriminant for leading jet

<u>*LeCun et al; 1998</u>

Maxence Draguet I maxence.draguet@physics.ox.ac.uk I ICHEP Flavour Tagging with GNN

With attention scale 1 / d^{in} instead 1 / $\sqrt{d^{in}}$

24

"Each weight matrix is maximall

updated without blowing up"

*Sum of n squared Gaussians of variance 1 is a Chi distribution of degree n

Maxence Draguet I maxence.draguet@physics.ox.ac.uk I ICHEP Flavour Tagging with GNN

Maximal Update Parametrization

"Effect of updates on activations

becomes roughly independent of width"

µTransfer

25

μP

Maximal Update Parametrization Pre-activation weights $L_1(m) = \sum |w_i^{(m)}|$

Blows up for SP, stable for µP!

Pathologic Test Case

Fixed LR Value Optimisation on Simplified Architecture

Pathologic Test Case

Fixed LR Value Optimisation on Simplified Architecture

GN2 Ongoing

- > Many variants under consideration (WIP):
- \circ lepton,
- more tracks,
- hadronic taus,
- \circ neutral constituents
- $\circ\,$ trackless b-tagging with hits

- more output classes (taus, lep/had b, ...)
- \circ full vertex reconstruction,
- \circ mass / energy regression

- > Now training on combined MC data for Run3: ~ 300M jets
- > Calibration & Trigger ongoing
- GN2X for boosted Higgs tagging (H(bb) & H(cc)) vs top and QCD
- > Synergies with other groups: Tau tagging, emerging jet tagging, ...