

Track Reconstruction for Future Colliders with Quantum Algorithms

42nd International Conference on High Energy Physics, Prague, Czech, July 18-24, 2024

Hideki Okawa

Institute of High Energy Physics, Chinese Academy of Sciences

Track Reconstruction at LHC & HL-LHC

- At the HL-LHC, <u>CPU time will increase exponentially with</u> <u>more pileup</u>, leading to increase in annual computing cost by a factor of 10-20.
- Tracking in the most CPU-consuming reconstruction task.
- GPU & ML-based approaches are actively investigated, but quantum algorithms may also bring in innovations.

	Run 1	Run 2	HL-LHC
μ	21	40	150-200
Tracks	~280	~600	~7-10k

Tracking as Optimization Problem

- Tracking as an optimization problem: a global approach to reconstruct tracks in one-go.
 (↔iterative approach: Combined Kalman Filter)
- Stimple-Abele & Garrido (1990): simulated annealing w/ all potential doublets generated with some cuts applied & pursue a binary classification task (i.e. solve an Ising/QUBO problem) to determine which ones should be kept.
- Modern quantum computing versions: quantum annealers w/ doublets (A. Zlokapa et al.) & triplet-based (F. Bapst et al.) approaches; quantum gate machines (L. Funcke et al., etc.)

Quantum Computers

Quantum Annealing

- Utilizes adiabatic quantum evolution to seek for the ground state of a Hamiltonian
 → Only applicable to optimization problems
- Adopted only by D-Wave Systems.

Quantum Gates

- Utilizes quantum logic gates
- General purposed
- IBM, Google, Xanadu, IonQ, Origin Quantum, QuantumCTek, etc.

Both as well as quantum-inspired approaches have been actively investigated in HEP

QC4HEP White Paper

Scope of This Talk

- 1. Tracking w/ Quantum Gate Computer
- <u>H. Okawa</u>, "Charged particle reconstruction for future high energy colliders with Quantum Approximate Optimization Algorithm," <u>Springer</u> <u>Communications in Computer and Information Science</u>, 2036 (2024) 272– 283, arXiv:2310.10255

2. Tracking w/ Quantum-Annealing-Inspired Algorithm

 <u>H. Okawa</u>, Q.-G. Zeng, X.-Z. Tao, M.-H. Yung, "Quantum Annealing Inspired Algorithms for Track Reconstruction at High Energy Colliders," <u>arXiv:2402.14718</u> (2024).

QUBO Formulation w/ Triplets

- Tracks are formed by connecting silicon detector hits: e.g. triplets (segments w/ 3 hits).
- Doublets/triplets are connected to reconstruct tracks & it can be regarded as a <u>quadratic unconstrained binary optimization (QUBO) / Ising</u> problem.

Dataset (TrackML)

- TrackML is an open-source dataset prepared for TrackML Challenges (two competitions hosted by CERN & Kaggle).
- It is designed w/ HL-LHC conditions (200 pileup) & run w/ fast simulation (e.g. noise, inefficiency, parametrized material effects, etc.)
- Only tracks w/ p_T>1 GeV in the barrel are considered.
- QUBO is computed event by event using <u>hepqpr-qallse framework</u>.

Amrouche, S., et al., arXiv:1904.06778 (2019); Amrouche, S., et al., Comput. Softw. Big Sci. 7(1), 1 (2023)

Thanks to Andreas Salzburger for suggestions and discussions!

H. Okawa, Springer Communications in Computer and Information Science, 2036 (2024) 272–283, arXiv:2310.10255

1. Quantum Gate Approach

- Used Quantum Alternative Operator Ansatz (QAOA) in pyqpanda-algorithm by Origin Quantum.
- # of layers, loss function & optimizer are optimized.
- Used quantum simulator as well as 6-qubit Origin Quantum hardware (Wuyuan).
- Accuracy reaches ~100% for >=4 layers (as multiple measurements are pursued)
- No sign of performance degradation in hardware for <=20 layers

Quantum Simulator

H. Okawa, Springer Communications in Computer and Information Science, 2036 (2024) 272–283, arXiv:2310.10255

Sub-QUBO Method

- Number of triplet candidates determines number of qubits required → ~O(10²x10²~10⁵x10⁵)
 HL-LHC conditions do not fit into the current scale of quantum annealing & gate computers
- QUBO is split into sub-QUBOs of size 6x6 to match with OriginQ hardware.
- <u>Theoretically-robust</u> sub-QUBO method using multiple solution instances is adopted (Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606) → known to outperform empirical methods like qbsolv

WIP: Triplet Efficiency & Purity

Efficiency =
$$\frac{TP}{TP + FN} = \frac{\# \text{ of matched reconstructed doublets}}{\# \text{ of true doublets}}$$

Purity = $\frac{TP}{TP + FP} = \frac{\# \text{ of matched reconstructed doublets}}{\# \text{ of all reconstructed doublets}}$,

- QAOA+sub-QUBO provides compatible performance as the previous quantum annealing studies.
- No sign of degradation in the real hardware
- This is the 1st tracking w/ QAOA, theoretically robust sub-QUBO & Chinese quantum computer

2. Quantum Annealing Inspired Algorithms

Quantum inspired algorithm

- "Quantum-inspired" algorithms search for minimum energy through the classical time evolution of differential equations: simulated annealing, simulated bifurcation (SB), simulated coherent Ising machine, etc.
- SB in particular can run in parallel unlike simulated annealing, in which one needs to access the full set of spins & not suitable for parallel processing

Simulated Bifurcation (SB)

> adiabatic Simulated Bifurcation (aSB)

$$\dot{x}_i = rac{\partial H_{ ext{SB}}}{\partial y_i} = \Delta y_i, \qquad \dot{y}_i = rac{\partial H_{ ext{SB}}}{\partial x_i} = - [Kx_i^2 - p(t) + \Delta] x_i + \xi_0 \sum_{j=1}^N J_{ij} x_j$$

ballistic Simulated Bifurcation (bSB)

$$\dot{x}_i = rac{\partial H_{ ext{SB}}}{\partial y_i} = \Delta y_i, \qquad \dot{y}_i = rac{\partial H_{ ext{SB}}}{\partial x_i} = (p(t) - \Delta) x_i + \xi_0 \sum_{j=1}^N J_{ij} x_j$$

> discrete Simulated Bifurcation (dSB)

$$\dot{x}_i = rac{\partial H_{ ext{SB}}}{\partial y_i} = \Delta y_i, \qquad \dot{y}_i = rac{\partial H_{ ext{SB}}}{\partial x_i} = (p(t) - \Delta) x_i + \xi_0 \sum_{j=1}^N J_{ij} ext{sign}(x_j)$$

M.H. Yung

3.7

Simulated Bifurcation

Goto et al., Sci. Adv. 2019; 5: eaav2372 Goto et al., Sci. Adv. 2021; 7: eabe7953

- Simulated bifurcation is known to outperform other quantum-inspired algorithms as well as quantum annealing (QA) for some problems
- Simulated Coherent Ising Machine (CIM) had largely degraded performance in our study, so is not presented.

N	Connectivity	$J_{i,j}$	Machine	TTS	
60	All-to-all	{±1}	dSBM RBM CIM QA	9.2 μs 10 μs 0.6 ms 1.4 s	
100	All-to-all	{±1}	dSBM RBM SimCIM CIM	29 μs 30 μs 0.6 ms 3.0 ms	
200	Sparse (Degree 3)	{0, -1}	dSBM QA CIM	0.70 ms 11 ms 51 ms	
700	All-to-all	{±1}	dSBM SimCIM DA	25 ms 0.14 s 0.27 s	
1024	All-to-all	{±1}	dSBM DA	55 ms 1 s	
1024	All-to-all _{{-2}	16 bits 2 ¹⁵ + 1,, 2 ¹⁵ ·	dSBM – 1} DA	0.29 s 0.9 s	
2000 (K ₂₀₀₀)	All-to-all	{±1}	dSBM	1.3 s	
2000 (G22)	Sparse (1%)	{0, -1}	dSBM SimCIM	2.7 s 12 s	
					10 ⁻⁶ 10 ⁻³ 1 TTS (s)

Track Efficiency & Purity w/ QAIA

- Simulated bifurcation provides compatible or slightly better performance than D-Wave Neal.
- Track efficiency stays over 95% for all dataset up to the highest HL-LHC conditions
- Purity degrades with track multiplicity but >90% for <6000 particles, >84% even for <10000 particles.

Computation Speed

- Ballistic simulated bifurcation provides <u>4 orders of magnitude speed-up (23min → 0.14s) from D-Wave Neal</u> at most (D-Wave qbsolv is even 2 orders of magnitude slower than Neal).
 → More speed-up expected with larger data size.
- Unlike D-Wave Neal, simulated bifurcation can effectively run <u>w/ multiple processing, GPU &</u> <u>FPGA</u> → Perfect match with HEP computing environment!!

Summary

- Tracking is the highest CPU-consuming reconstruction task in the HL-LHC era.
- Improvement of existing methods & classical ML methods are bringing in improvement, but another leap from quantum machine learning would be highly exciting.
- Presented recent results on the quantum tracking using two complementary approaches: using a quantum-gate computer (w/ QAOA+subQUBO) or quantum-annealing inspired algorithms.
- Quantum Gate approach: promising tracking performance from the real quantum hardware; 1st tracking w/ QAOA, theoretically robust sub-QUBO & Chinese quantum computer
- Quantum-inspired approach: four orders of magnitude speed-up at most (more speed-up expected w/ larger dataset) & can already be considered for implementation. This is the 1st application of simulated bifurcation in HEP!
- Further studies are ongoing. Stay tuned!

Thank you for listening!

Backup

References to Previous Studies

- Bapst, F., Bhimji, W., Calafiura, P., Gray, H., Lavrijsen, W., Linder, L.: A pattern recognition algorithm for quantum annealers. Comput. Softw. Big Sci. 4(1), 1 (2020) https://doi.org/10.1007/s41781-019-0032-5
- Zlokapa, A., Anand, A., Vlimant, J.-R., Duarte, J.M., Job, J., Lidar, D., Spiropulu, M.: Charged particle tracking with quantum annealing-inspired opti- mization. Quantum Machine Intelligence 3, 27 (2021) <u>https://doi.org/10.1007/s42484-021-00054-w</u>
- Stimpfl-Abele, G., Garrido, L.: Fast track finding with neural networks. Computer Physics Communications 64(1), 46–56 (1991) https://doi.org/10.1016/0010-4655(91)90048-P
- Funcke, L., Hartung, T., Heinemann, B., Jansen, K., Kropf, A., K"uhn, S., Meloni, F., Spataro, D., T"uys"uz, C., Yap, Y.C.: Studying quantum algorithms for particle track reconstruction in the LUXE experiment. J. Phys. Conf. Ser. 2438(1), 012127 (2023) https://doi.org/10.1088/1742-6596/2438/1/012127
- Crippa, A., et al.: Quantum algorithms for charged particle track reconstruction in the LUXE experiment. DESY-23-045, MIT-CTP/5481, arXiv:2304.01690 (2023)
- Nicotra, D., Lucio Martinez, M., Vries, J.A., Merk, M., Driessens, K., Westra, R.L., Dibenedetto, D., C´ampora P´erez, D.H.: A quantum algorithm for track reconstruction in the LHCb vertex detector. JINST 18(11), 11028 (2023) <u>https://doi.org/10.1088/1748-0221/18/11/P11028</u>
- Schwaegerl, T., Issever, C., Jansen, K., Khoo, T.J., Kuehn, S., Tueysuez, C., Weber, H.: Particle track reconstruction with noisy intermediate-scale quantum computers (2023) arXiv:2303.13249
- Brown, C., Spannowsky, M., Tapper, A., Williams, S., Xiotidis, I.: Quantum Pathways for Charged Track Finding in High-Energy Collisions (2023) arXiv:2311.00766 [hep-ph]
- Tueysuez, C., Rieger, C., Novotny, K., Demirk¨oz, B., Dobos, D., Potamianos, K., Vallecorsa, S., Vlimant, J.-R., Forster, R.: Hybrid quantum classical graph neural networks for particle track reconstruction. Quantum Machine Intelligence 3(2), 29 (2021) <u>https://doi.org/10.1007/s42484-021-00055-9</u>
- Chan, W.Y., Akiyama, D., Arakawa, K., Ganguly, S., Ka ji, T., Sawada, R., Tanaka, J., Terashi, K., Yorita, K.: Application of quantum computing techniques in particle tracking at LHC. Technical report, CERN, Geneva (2023). <u>https://cds.cern.ch/record/2869559</u>
- Magano, D., et al.: Quantum speedup for track reconstruction in particle accelerators. Phys. Rev. D 105(7), 076012 (2022) <u>https://doi.org/10.1103/PhysRevD.105.076012</u>

QAOA in Origin Quantum (本源)

- QAOA solves binary optimization problem. Library in pyqpanda-algorithm by Origin Quantum.
- Adopts Quantum Alternative Operator
 Ansatz for QAOA.
 An example of circuits from the actual run

- Can utilize CVaR loss function (P. Barkoutsos et al., Quantum, 2020, 4: 256) or Gibbs optimization
- 6 qubit machine (Wuyuan 悟源) is used for the real hardware computation in this talk.

QAOA Optimization

- QAOA does not perform well w/ shallow layers, but provides good performance with more layers. <u>Compatible performance b/w hardware & simulator</u>.
- L-BFGS-B optimizer is better than SLSQP. TNC has degraded performance & not shown here.
- No significant difference w/ CVaR or Gibbs loss function.
- Probability saturates around 7 layers for L-BFGS-B cases.

QAOA Accuracy

- Note that the probability is NOT the accuracy of QAOA.
- A single job runs multiple measurements, ranks the answers by probability & select the highest probability state as answer.
- The accuracy already reaches 100% within the statistical uncertainty at 5 layers.
- For further studies, a conservative choice of 7 layers is used.

Preliminary sub-QUBO Results

- Ran measurements to compare the performance and stability. 7 layers used in QAOA.
- No significant dependence on sub-QUBO model parameters (N_I, N_E, N_S) & <u>compatible</u> <u>performance between OriginQ simulator & actual hardware!</u>
- Visible improvement w/ sub-QUBO compared to the simulated annealing only!

Mimimum Ising Energy Prediction

- Originally proposed adiabatic simulated bifurcation (aSB) is largely outperformed by new versions, so not shown here. D-Wave Neal is shown as a simulated annealing benchmark.
- Ballistic simulated bifurcation (bSB) provides the best prediction of minimum energy with the least fluctuation.
- Discrete simulated bifurcation (dSB) is not as good as the other two, but the impact on the reconstruction performance is not significant (next slide)

Origin Quantum

- Using superconductors.
- Free hardware available last year: 6 (悟源) & 12 qubits (悟空)
- 72 qubit machine available this year.

Origin Quantum

From Origin Quantum website

Multiple Solution Instances

- 3 parameters (N_I , N_E , N_S) in this sub-QUBO method.
- Extract N_I quasi-optimal solutions from full-QUBO classically.
- Randomly select N_s solution instances from N_l .
- Focus on particular binary variable x_i. Rank them in accordance to how much they vary over N_s solution instances. Highly varying x_i will be included in the sub-QUBO model.
- Pick-up process of N_S solution from quantum computing is repeated N_E times & N_E sub-QUBO models are considered.
- Returns a pool of N_I solutions & the best solution will be chosen.

Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606

Sub-QUBO Methods

Algorithm 2. Proposed Hybrid Annealing Method

- 1: procedure Proposed Method with Multi-Instances
- for $(i = 1; i \le N_I; i + +)$ do 2:
- $X_i \leftarrow \text{Initialize}(\text{QUBO})$ 3:
- $Pool \leftarrow AddInstancePool(Pool, X_i)$ 4:
- $X_{best} \leftarrow \text{FindBest(Pool)}$ 5:
- while not converged do 6:

7: **for**
$$(i = 1; i \le N_I; i + +)$$
 do

8:
$$X_i \leftarrow \text{Optimize}(\text{QUBO}, X_i)$$

▷ Using a classical computer

9: **for**
$$(i = 1; i \le N_E; i + +)$$
 do

10:
$$X_1, X_2, \dots, X_{N_S} \leftarrow \text{SelectInstance}(\text{Pool}, N_S)$$

11: **for**
$$(j = 1; j \le n; j + +)$$
 do
12: **for** $(k = 1; k \le N_S; k + +)$ **do**

12: **for**
$$(k = 1; k \le N)$$

13:
$$c_j \leftarrow c_j + x_{k,j}$$

14:
$$d_j \leftarrow |c_j - \frac{N_S}{2}|$$

15: subQUBO
$$\leftarrow$$
 Extract(ArgSort(d_1, d_2, \cdots, d_n), m, X_t

16:
$$X' \leftarrow \text{Optimize}(\text{subQUBO}, X_t)$$

▷ Using an Ising machine

17: Pool
$$\leftarrow$$
 AddInstancePool(Pool, X')

 $X_{best} \leftarrow \text{FindBest(Pool)}$ 18:

19: Pool
$$\leftarrow$$
 ArrangeInstancePool(Pool, N_I)

return $f(X_{best}), X_{best}$ 20:

Algorithm 4. Qbsolv[10]

- 1: procedure QBSOLV $X \leftarrow \text{Initialize}(\text{QUBO})$ $X_{best} \leftarrow \text{TabuSeach}(\text{QUBO}, X)$ 3: index \leftarrow OrderByImpact(QUBO, X_{best}) 4: while not converged do 5: 6: for (i = 0; i < Size(QUBO); i + = Size(subQUBO)) do subQUBO ← Decompose(QUBO, 7: $index[i:i+Size(subQUBO)-1], X_{best})$ subX \leftarrow Optimize(subQUBO, X_{best}) 8: 9: $X[index[i:i+Size(subQUBO)-1]] \leftarrow subX$ $X \leftarrow \text{TabuSearch}(\text{QUBO}, X)$ 10: index \leftarrow OrderByImpact(QUBO, X) 11: if $f(X) < f(X_{best})$ then 12: 13: $X_{best} \leftarrow X$
- 14: return $f(X_{best}), X_{best}$

L.Funcke, T.Hartung, B.Heinemann, K.Jansen, A.Kropf, S.Kühn, F.Meloni, D.Spataro, C.Tüysüz, Y.C.Yap, https://arxiv.org/abs/2202.06874

Previous Results from LUXE

- Tracking successfully ran w/ quantum & classical benchmarks
- Classical GNN performance is limited by the training dataset size
- Room for improvement for both GNN & quantum tracking (optimization ongoing)

Gate-based Approach: VQE

 QUBO can be mapped to Ising Hamiltonian and be solved using Variational Quantum Eigensolver (VQE) or Quantum Approximate Optimization Algorithm (QAOA) w/ quantum gates.

$$\mathcal{H} = -\sum_{n=1}^{N} \sum_{m < n} \bar{b}_{nm} \sigma_n^x \sigma_m^x - \sum_{n=1}^{N} \bar{a}_n \sigma_n^x$$

- DESY team considered VQE: TwoLocal ansatz w/ R_Y gates & circular CNOT entangling pattern w/ IBM
- Performance compatible w/ classical traditional method.

