

CEPC-on-Gaussino prototype: an application of Gaussino simulation framework for CEPC experiment

Tao Lin (IHEP)

lintao@ihep.ac.cn

ICHEP 2024

20 July 2024

Outline

- Introduction
- Moving to a next simulation framework
- CEPC-on-Gaussino prototype
- Summary

Outline

Introduction

- CEPC project and the status
- CEPCSW and the current simulation framework
- Moving to a next simulation framework
- CEPC-on-Gaussino prototype
- Summary

CEPC: Circular Electron Positron Collider

- CEPC is an e+e- Higgs factory producing Higgs/W/Z bosons and top quarks, aims at discovering new physics beyond the Standard Model.
- Milestones:
 - 2018.11: CEPC CDR released
 - 2023.12: CEPC Accelerator TDR released

Towards Reference Detector TDR

CEPCSW: software based on Key4hep

- CEPCSW is developed based on a Common Turnkey Software Stack (Key4hep)
 - The consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in June 2019
 - Maximize the sharing of software components among different experiments.

Core software

- Gaudi (Hive): defines interfaces to all software components and controls their execution
- EDM4hep: generic event data model
- K4FWCore: manages the event data
- DD4hep: geometry description
- CEPC-specific framework software: generator, Geant4 simulation, beam background mixing, fast simulation, machine learning interface, etc.
- CEPCSW source code:
 - <u>https://code.ihep.ac.cn/cepc/CEPCSW</u>

Simulation framework in CEPCSW

- Full detector simulation has been developed based on Geant4.
 - A unified simulation framework to integrate Geant4 and Gaudi.
 - Detector description: convert from DD4hep geometry using DDG4.
 - Event data: SimTrackerHit and SimCalorimeterHit
 - Generator interfaces: HepMC, LCIO, StdHep, Beam background, Particle Gun
 - Detector responses: trackers, DC, TPC, calorimeter
 - Monte Carlo truth: association between hits and MC particles
 - Fast simulation interfaces: Geant4 Region based.

Outline

Introduction

Moving to a next simulation framework

- Motivation
- Gaussino project from LHCb
- CEPC-on-Gaussino prototype
- Summary

Moving to a next simulation framework (1)

- The current simulation framework in CEPCSW is not benefit from the multithreading because it does not support the Geant4-MT.
 - Sharing the geometries and physics lists could reduce the memory usage.

МВ	
545.6^	##
	::::::# :::::::::::::::::::::::::::::::
e ()@: : ::# ::: :: :@:: :: : ::: : :::
e e e e e e e e e e e e e e e e e e e) : : ::# ::: :: :@:: :: : ::: : :::
00) : : ::# ::: :: :@:: :: : ::: : :::
00) : : ::# ::: :: :@:: :: : ::: : :::
00) : : ::# ::: :: :@:: :: : ::: : :::
0000) : : ::# ::: :: :@:: :: : ::: : :::
000000) : : ::# ::: :: :@:: :: : ::: : :::
0000 000) : : ::# ::: :: :@:: :: : ::: : :::
0000 0000) : : ::# ::: :: :@:: :: : ::: : ::: :
0000 0000) : : ::# ::: :: :@:: :: : ::: : ::: :
00000 00000::::0:0000) : : ::# ::: :: :@:: :: : ::: : :::
0000 000000 00000 00000) : : ::# ::: :: :@:: :: : ::: : :::
	i : : ::# ::: :: :@:: :: : ::: : :::
::@::: :@: :: @@@@ : : @:@@@@@ @@@@@	i : : ::# ::: :: :@:: :: : ::: : ::: : :::
::@::: :@: :: @@@ : : @:@@@@@ @@@@@) : : ::# ::: :: :@:: :: : ::: : :::
:::@::: :@: :: @@@ : : @:@@@@@ @@@@@	i : : ::# ::: :: :@:: :: : : :: : ::: : :::
:::@::: :@: :: @@@@ : : @:@@@@@ @@@@@	i : : ::# ::: :: :@:: :: : ::: : ::: : :::
:::@::: :@: :: @@@ : : @:@@@@@ @@@@@	! : : ::# ::: :: :@:: :: : ::: : ::: : :::
0	

Memory usage (serial version)

Simulation setup:

- Detector: TDR_o1_v01
- Physics list: QGSP_BERT
- Generation: single muons
- N events: 100

The RSS memory is about **950MB at** initialization stage.

The figure shows the **heap memory usage**.

Command line:

gaudirun.py --profilerName=valgrindmassif sim.py

Moving to a next simulation framework (2)

- Question: Develop a new one or adopt an existing one?
 - Gaussino is a potential solution in Key4hep. [arXiv: 2312.08152]
- Gauss-on-Gaussino: Evolution of the simulation framework from LHCb
 - The underlying framework is moving to Gaudi Functional and Gaudi Hive
 - Better support for multi-threading, machine learning, fast simulation methods
 - Gauss-on-Gaussino is a new version of LHCb simulation framework

[1] Michał Mazurek, CHEP 2023, The LHCb simulation software Gauss and its Gaussino core framework[2] Michał Mazurek, CHEP 2023, From prototypes to large scale detectors: how to exploit the Gaussino simulation framework for detectors studies, with a detour into machine learning

Overview of Gaussino (1)

- Gaussino is a thread-safe simulation framework based on Gaudi Functional and provides interfaces to Pythia and Geant4.
- Modular design
 - Gaudi Functional Algorithms
 - Gaudi Tools
- Four components
 - Generation of events
 - The detector simulation
 - Geometry service
 - Monitoring & output
- Easy to configure by customizing the algorithms, services and tools

- ✤ Generation: Generation and ParticleGun
 - The input is LHCb GenHeader
 - The output is **HepMC GenEvent**
- ✤ Detector simulation: GiGaAlg
 - The input is **HepMC GenEvent**
 - The output is G4Event and MC truths

Overview of Gaussino (2)

- Multithreading with Geant4
 - A queue is used to communicate between Gaussino and Geant4

Sim/GiGaMTCore/include/GiGaMTCoreRun/GiGaWorkerPilot.h

Outline

Introduction

Moving to a next simulation framework

CEPC-on-Gaussino prototype

- Design
- Implementation

Summary

CEPC-on-Gaussino prototype (1)

- Gaussino still depends on LHCb software and removing the dependencies is on going
 - Some existing works: <u>MR !1493</u> in Gaudi by Graeme.
- Development of CEPC-on-Gaussino was planned with the following three steps
 - ✓ Using the original version having the dependency on the LHCb software
 - Creating a modified version with less LHCb dependency
 - Directly using the Key4hep version without LHCb dependency (not available at the moment)

CEPC-on-Gaussino prototype (2)

- It will be too heavy to build the prototype with the whole LHCb software.
- CMakeLists.txt in LHCb and gaussinoextlibs are modified to build necessary libraries.
- After optimization, about 20 libraries are built in LHCb and GaussinoExtLibs.

[lint@lxslc	:70	95]\$ I	ls –1 LHO	Cb/Instal	llAre	ea/l	lib/	
total 24712								
drwxr-xr-x		lint	physics	18	Dec	12	03:54	cmake
-rw-rr	1	lint	physics	37218	Dec	12	03:54	DAQEventDict_rdict.pcm
-rw-rr	1	lint	physics	3053	Dec	12	03:54	EventBaseDict_rdict.pcm
-rw-rr	1	lint	physics	7512	Dec	12	03:54	GaudiGSLMathDict_rdict.pc
-rw-rr	1	lint	physics	8364	Dec	12	03:54	GenEventDict_rdict.pcm
-rw-rr	1	lint	physics	370	Dec	12	03:54	LHCb.components
-rw-rr	1	lint	physics	751	Dec	12	03:54	LHCb.confdb
-rw-rr	1	lint	physics	32768	Dec	12	03:54	LHCb.confdb2
-rw-rr	1	lint	physics	22277	Dec	12	03:54	LHCbDict.rootmap
-rw-rr	1	lint	physics	28815	Dec	12	03:54	LHCbMathDict_rdict.pcm
-rwxr-xr-x	1	lint	physics	424208	Dec	12	03:54	libDAQEventDict.so
-rwxr-xr-x	1	lint	physics	3229632	Dec	12	03:54	libDAQEventLib.so
-rwxr-xr-x	1	lint	physics	236840	Dec	12	03:54	libEventBaseDict.so
-rwxr-xr-x	1	lint	physics	1171648	Dec	12	03:54	libGaudiGSLLib.so
-rwxr-xr-x	1	lint	physics	269464	Dec	12	03:54	libGaudiGSLMathDict.so
-rwxr-xr-x	1	lint	physics	1836888	Dec	12	03:54	libGaudiGSL.so
-rwxr-xr-x	1	lint	physics	1221432	Dec	12	03:54	libGenEventDict.so
-rwxr-xr-x	1	lint	physics	442888	Dec	12	03:54	libGenEvent.so
-rwxr-xr-x	1	lint	physics	3061496	Dec	12	03:54	libLHCbKernel.so
-rwxr-xr-x	1	lint	physics	2534464	Dec	12	03:54	libLHCbMathDict.so
-rwxr-xr-x	1	lint	physics	6642152	Dec	12	03:54	libLHCbMathLib.so
-rwxr-xr-x	1	lint	physics	363000	Dec	12	03:54	libMCEvent.so
-rwxr-xr-x	1	lint	physics	509928	Dec	12	03:54	libPartPropDict.so
-rwxr-xr-x	1	lint	physics	1107720	Dec	12	03:54	libPartPropLib.so
-rwxr-xr-x	1	lint	physics	2050024	Dec	12	03:54	libPartProp.so
-rw-rr	1	lint	physics	7934	Dec	12	03:54	PartPropDict_rdict.pcm

[IIIIG@IXSICTOJ] # IS -I gauSSINDexCIIDS/INStallArea/IID/	
total 46028	
drwxr-xr-x 3 lint physics 29 Dec 12 03:54 cmake	
-rw-rr 1 lint physics 2940 Dec 12 03:54 G_DDG4Python_rdict.pcm	
-rw-rr 1 lint physics 1763 Dec 12 03:54 GDDPython_rdict.pcm	
-rw-rr 1 lint physics 208 Dec 12 03:54 libDDG4LCIO.components	
lrwxrwxrwx 1 lint physics 19 Oct 24 11:51 libDDG4LCIO.so -> libDDG4LCIO.so.1.2	25
-rwxr-xr-x 1 lint physics 3452704 Dec 12 03:54 libDDG4LCI0.so.1.25	
-rw-rr 1 lint physics 16549 Dec 12 03:54 libDDG4Plugins.components	
lrwxrwxrwx 1 lint physics 22 Oct 24 11:51 libDDG4Plugins.so -> libDDG4Plugins	.so.1.25
-rwxr-xr-x 1 lint physics 15688056 Dec 12 03:54 libDDG4Plugins.so.1.25	
-rw-rr 1 lint physics 220 Dec 12 03:54 libDDG4Python.components	
lrwxrwxrwx 1 lint physics 21 Oct 24 11:51 libDDG4Python.so -> libDDG4Python.so	o.1.25
-rwxr-xr-x 1 lint physics 818528 Dec 12 03:54 libDDG4Python.so.1.25	
$lrwxrwxrwx 1 lint physics 15 Oct 24 11:51 lib0DG4.so \rightarrow lib0DG4.so.1.25$	
-rwxr-xr-x 1 lint physics 23030168 Dec 12 03:54 libDDG4.so.1.25	
lrwxrwxrwx 1 lint physics 19 Oct 24 11:51 libDDPython.so -> libDDPython.so.1.2	25
-rwxr-xr-x 1 lint physics 422488 Dec 12 03:54 libDDPython.so.1.25	
lrwxrwxrwx 1 lint physics 20 Oct 24 11:49 libHepMC3search.so -> libHepMC3searc	ch.so.4
-rwxr-xr-x 1 lint physics 246384 Dec 12 03:54 libHepMC3search.so.4	
-rw-rr 1 lint physics 363832 Dec 12 03:54 libHepMC3search-static.a	
lrwxrwxrwx 1 lint physics 14 Oct 24 11:49 libHepMC3.so -> libHepMC3.so.3	
-rwxr-xr-x 1 lint physics 923296 Dec 12 03:54 libHepMC3.so.3	
-rw-rr 1 lint physics 2108684 Dec 12 03:54 libHepMC3-static.a	
drwxr-xr-x 3 lint_physics 27 Dec 12 03:54 python3.9	

CEPC-on-Gaussino prototype (3)

- Event Data Model
 - reuse GenEvent and MCEvent from the LHCb project
 - A minimum number of packages are selected
 - Non-required dependencies were removed

Detector description

- use the DD4hep, so that no dependent on LHCb detector description library
- Use DD4hepCnvSvc as Geometry Service to load CEPC tracker detector.

Detector response:

- Implement G4 Sensitive Detector and Hit object for tracker detector.
- Implement a monitor tool to save user output.

CEPC-on-Gaussino prototype (4)

- Job option
 - CEPC-on-Gaussino is configured in the Python script.
 - Register the sensitive detector factory and associate it with DD4hep detector name.
 - Register the monitor tool for testing only.
 - The output in EDM4hep is not implemented yet.

```
montool = giga.addTool(GenericTrackerMonTool, name="GenericTrackerMonTool.OutputLevel = DEBUG
montool.CollectionName = "VXDCollection"
giga.MonitorTools = ["GenericTrackerMonTool"]
GaussinoGeometry().GeometryService = "DD4hepCnvSvc"
DD4hepCnvSvc().DescriptionLocation = "CEPCSW/Detector/DetCRD/compace"
DD4hepCnvSvc().SensDetMappings = {"VXD": "VXD"}
# DD4hepCnvSvc().OutputLevel = DEBUG
```

https://gitlab.cern.ch/talin/build-cepc-on-gaussino/-/blob/main/my_gaussino_dd4hep.py?ref_type=heads

CEPC-on-Gaussino prototype (5)

 The installation script is used to build LHCb, gaussinoextlibs, Gaussino, and CEPCSW with branch name cepc-on-gaussino.

<pre>\$ git clone ssh://git@gitlab.cern.ch:7999/talin/ build-cepc-on-gaussino.git \$ cd build-cepc-on-gaussino \$ bash build.sh build-all \$ source setup.sh \$ gaudirun.py my_gaussino_dd4hep.py</pre>		<pre># == LCG == lcg_version_lcg=LCG_103 # The version used by LCG self. lcg_platform=x86_64-centos7-gcc11-opt export PATH=/cvmfs/sft.cern.ch/lcg/contrib/git/bin:\$PATH export LD_LIBRARY_PATH=/cvmfs/sft.cern.ch/lcg/contrib/git/lib64:\$LD_LIBRARY_PATH source /cvmfs/sft.cern.ch/lcg/views/\${lcg_version_lcg}/\${lcg_platform}/setup.sh # == Gaussino and dependencies == export WORKTOP=\$(pwd) for project in LHCb gaussinoextlibs Gaussino CEPCSW; do project_path=\$WORKTOP/\$project/InstallArea export CMAKE_PREFIX_PATH=\$project_path:\$CMAKE_PREFIX_PATH export PATH=\$project_path/lib:\$LD_LIBRARY_PATH export PATH=\$project_path/lib:\$LD_LIBRARY_PATH export PYTHONPATH=\$project_path/lib:\$PYTHONPATH export PYTHONPATH=\$project_path/python:\$PYTHONPATH done</pre>	
Project	Git repo	export GAUSSINOROOT=\$WORKTOP/Gaussino/Sim/Gaussino }	
_HCb	https://gitlab.cern.ch/talin/LHCb/-/	/tree/cepc-on-gaussino?ref_type=heads	
gaussinoextlibs	https://gitlab.cern.ch/talin/gaussin	oextlibs/-/tree/cepc-on-gaussino?ref_type=heads	
Gaussino	https://gitlab.cern.ch/talin/Gaussir	no/-/tree/cepc-on-gaussino?ref_type=heads	
CEPCSW	CSW https://gitlab.cern.ch/talin/CEPCSW/-/tree/cepc-on-gaussino?ref_type=heads		
nstallation script	stallation script https://gitlab.cern.ch/talin/build-cepc-on-gaussino		

Implementation (1): Geometry

- Gaussino provides several ways to setup geometry.
- Specify the factory (GiGaFactoryBase < G4VUserDetectorConstruction >) in GiGaMT.DetectorConstruction and setup the corresponding properties.
 - **GiGaMTDetectorConstructionFAC** (default): property GiGaMTGeoSvc
 - GDMLConstructionFactory: property GDML
 - DD4hepDetectorConstructionFAC: property DescriptionLocation
- If use the default factory, the geometry could be customized using the GeoSvc (IGiGaMTGeoSvc).
 - DD4hepCnvSvc
 - Property DescriptionLocation

<pre>class DD4hepCnvSvc : public extends<service, igigamtgeosvc=""> { public: using extends::extends; virtual ~DD4hepCnvSvc() = default;</service,></pre>	
<pre>// Service pure member functions StatusCode initialize() override; StatusCode finalize() override;</pre>	
<pre>// Pointer to the root of G4 geometry tree G4VPhysicalVolume* constructWorld() override; void constructSDandField() override;</pre>	
protected:	
<pre>// Function to load the geometry into DD4hep. Virtual</pre>	
<pre>// to allow being replaced in derived classes if needed. virtual const dd4hep::Detector& getDetector() const;</pre>	

<pre>giga = GiGaMT() dettool = giga.addTool(GiGaMTDetectorConstructionFAC(), name="DetConst",) giga.DetectorConstruction = getattr(giga, "DetConst")</pre>
<pre>dettool.GiGaMTGeoSvc = self.getProp("GeometryService") dettool.SensDetVolumeMap = self.getProp("SensDetMap") extra_tools = self.getProp("ExtraGeoTools") dettool.AfterGeoConstructionTools = extra_tools add_constructors_with_names(dettool, extra_tools)</pre>
<pre>algs = [] algs += selfset_external_detector(dettool) algs += selfset_parallel_geometry(dettool) selfset_custom_simulation_regions(dettool) selfset_gdml_import(dettool) selfset_gdml_export(dettool)</pre>

Implementation (2): Sensitive Detector

- DDG4 classes are reused with minor changes:
 - A hit type: **Geant4Hits**. This is from DDG4.
 - A DDG4 based SD: **DDG4SensitiveDetector**. Also from DDG4, but adding the GiGaMessage in the base class.
 - A concrete SD: GenericTrackerSensitiveDetector.
- ✤ Gaussino integration part:
 - A GiGa factory **GenericTrackerSensDetTool** is used to create the SD.
 - Declare the factory component: GenericTrackerSensDetToolComponent.

Implementation (3): Monitoring tool

 For testing only, the histograms of positions and deposit energies are created.

```
StatusCode GenericTrackerMonTool::monitor( const G4Event& aEvent )
 std::lock_guard<std::mutex> guard(m_hist_lock);
  G4HCofThisEvent* collections = aEvent.GetHCofThisEvent();
 G4VHitsCollection* collect;
  dd4hep::sim::Geant4TrackerHit* hit;
  double energyTotal;
  int hitNo;
  debug() << "There are " << collections->GetNumberOfCollections() << " hit collections." << endmsg;</pre>
  for ( int iter_coll = 0; iter_coll < collections->GetNumberOfCollections(); iter_coll++ ) {
   collect = collections->GetHC( iter_coll );
   if ( collect->GetName().find( m_coll_name) != std::string::npos ) {
     size_t n_hit = collect->GetSize();
     energyTotal = 0;
     hitNo
                   = 0;
     debug() << "\t" << n_hit << " hits are stored in a calorimeter collection #" << iter_coll << ": "
                << collect->GetName() << endmsg;
      for ( size_t iter_hit = 0; iter_hit < n_hit; iter_hit++ ) {</pre>
         hit = dynamic_cast<dd4hep::sim::Geant4TrackerHit*>( collect->GetHit( iter_hit ) );
          if ( hit->energyDeposit != 0 ) hitNo++;
          m_hitX->fill( hit->position.x()/CLHEP::mm );
          m_hitY->fill( hit->position.y()/CLHEP::mm );
          m_hitZ->fill( hit->position.z()/CLHEP::mm );
         m_hitEnergy->fill( hit->energyDeposit/CLHEP::GeV );
          m_hitXY->fill( hit->position.x()/CLHEP::mm, hit->position.y()/CLHEP::mm );
          energyTotal += hit->energyDeposit/CLHEP::GeV;
     std::cout << "\t" << hitNo << " hits are non-zero in collection #" << iter_coll << ": " << collect->GetName()
                << std::endl;
     std::cout << "\t" << energyTotal << " MeV = total energy stored" << std::endl;</pre>
      m_totHitEnergy->fill( energyTotal );
```

Summary

- The simulation framework in CEPCSW has been developed to support the TDR.
- In order to benefit from multi-threading techniques, it is necessary to move from serial version to multi-threaded version.
- Gaussino project from LHCb has been chosen as the next simulation framework in Key4hep.
- CEPC-on-Gaussino prototype has been implemented without dependencies on the whole LHCb software stack.

Thank you for your attention!

backup

Generation phase

- Generation algorithms: "Generation" and "ParticleGun"
 - The input is LHCb GenHeader
 - The output is HepMC GenEvent

class Generation

: public Gaudi::Functional::MultiTransformer< std::tuple<std::vector<HepMC3::GenEventPtr>, LHCb::GenCollisions, LHCb::GenHeader>(const LHCb::GenHeader&), Gaudi::Functional::Traits::BaseClass_t<RndAlgSeeder>>

class ParticleGun

- : public Gaudi::Functional::MultiTransformer<
 std::tuple<HepMC3::GenEventPtrs, LHCb::GenCollisions, LHCb::GenHeader>(const LHCb::GenHeader&),
 Gaudi::Functional::Traits::BaseClass_t<RndAlgSeeder>>
- The generation algorithm
 - It consists of different Gen tools
 - Thread safety of generators
- The particle gun algorithm
 - N Particles, Particle type, momentum, etc.

Detector simulation phase

- Detector simulation algorithm: GiGaAlg
 - The input is HepMC GenEvent
 - The output is G4Event and MC truths

- GiGaMT (Service) is used by GiGaAlg to simulate events with Geant4.
 - The major interface to Geant4, including Detector Construction, Physics List and User Actions.