
Differentiable Vertex Fitting
for Jet Flavour Tagging
Rachel Smith, Inês Ochoa, Ruben Inácio, Jonathan

Shoemaker, Michael Kagan

ICHEP 2024
July 18-24, 2024

I. Ochoa - ICHEP2024

Introduction (I)

• Secondary vertex (SV): a point where particles are
produced in a collision or a decay

• SV reconstruction:

1. What set of particles have been produced at the
same vertex?

2. What is the vertex position?

3. Can we improve the estimate of the track
parameters by imposing a vertex constraint?

2

Track 1
Track 2

Track 3

X

Y

PV

SV

PV = Primary Vertex
SV = Secondary Vertex

I. Ochoa - ICHEP2024 3

• Vertex finding: grouping tracks that
originate at the same point in space

• Vertex fitting: given a set of tracks and

their track parameters and associated

covariance matrices , estimate the vertex

position and the momentum vectors of

all tracks at the vertex.
➡E.g. via the minimisation of a weighted χ2

N

qi

Vi

v pi q1, V1

Perigee Parameters w.r.t.  
the Primary Vertex

Track 1
Track 2

Track 3

q2, V2

q3, V3

v

p1 p2

p3

Predicted Secondary 
Vertex

X

Y

PV

Introduction (II)

qi = (d0, z0, ϕ, θ, ρ)
d0 : signed transverse impact parameter
z0 : longitudinal impact parameter
ϕ : polar angle of trajectory
θ : azimuthal angle of trajectory
ρ : signed curvature

I. Ochoa - ICHEP2024

Aim of this work

4

Can we integrate vertex reconstruction into a
ML end-to-end trainable algorithm?

• Secondary vertex reconstruction is usually performed by manually optimised / low-
level algorithms.

• The outcome is then fed into downstream machine learning algorithms (DL1 by ATLAS).

• In state-of-the-art algorithms (GN1 & GN2 by ATLAS), a single end-to-end neural
network is employed with no intermediate low-level algorithms, but also no explicit
secondary (or tertiary) vertex reconstruction.

CERN Data Science Seminar by S. Stroud obo ATLAS

https://indico.cern.ch/event/1232499/attachments/2602341/4494127/2023-03-01_GN1_Seminar.pdf

I. Ochoa - ICHEP2024

 NDIVE: Neural Differentiable Vertexing layer

5

• We propose to explicitly reintroduce vertex reconstruction into end-to-end ML b-tagging
algorithms via a vertexing layer that performs both vertex finding and vertex fitting.

Vertex fitting formulated as an optimization problem, and using implicit
differentiation to compute the derivative of the fitted vertex.
Differentiable programming for integrating domain knowledge into NN training.

Track Params at PV

Weight Predictor
(Transformer)

Differentiable
Vertex

Fitting Layer

SV Position  
& Covariance

NDIVE

Weights

I. Ochoa - ICHEP2024

Track Params at PV

Weight Predictor
(Transformer)

Differentiable
Vertex

Fitting Layer

SV Position  
& Covariance

NDIVE

Weights

 NDIVE: Neural Differentiable Vertexing layer

6

Vertex fitting algorithm with
tracks and weights as inputs
and no trainable parameters

x = (v, {pi}){wi}

qi, Vi

Transformer neural network trained
to assign weights to tracks

Once a vertex solution is found, the track weights are adjusted
by leveraging the differentiable vertex fitter.

Loss function: mean
euclidean distance
between true and
predicted vertex

I. Ochoa - ICHEP2024 7

Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

• Values to be optimised:

• Input data: and

x = (v, {pi})
qi = (d0, z0, ϕ, θ, ρ) Vi

Inclusive Vertex Fit formulation

q1, V1

Perigee Parameters w.r.t.  
the Primary Vertex

Track 1
Track 2

Track 3

q2, V2

q3, V3

v

p1 p2

p3

Predicted Secondary 
Vertex

X

Y

PV

https://www.sciencedirect.com/science/article/abs/pii/0168900292908593

I. Ochoa - ICHEP2024 8

Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

• Values to be optimised:

• Input data: and
• The following objective function is minimised:

x = (v, {pi})
qi = (d0, z0, ϕ, θ, ρ) Vi

Inclusive Vertex Fit formulation

χ2 =
N

∑
i=1

wi(qi − hi(v, pi))TV−1
i (qi − hi(v, pi))

q1, V1

Perigee Parameters w.r.t.  
the Primary Vertex

Track 1
Track 2

Track 3

q2, V2

q3, V3

v

p1 p2

p3

Predicted Secondary 
Vertex

X

Y

PV

 track model
 weight of track to the vertex fit

hi(v, pi) :
wi : i

v * (tracks, w) = arg min
v

χ2(v; tracks, w)

x̂(tracks, w) = arg min
x

χ2(x; tracks, w)

implicitly dependent on w

https://www.sciencedirect.com/science/article/abs/pii/0168900292908593

I. Ochoa - ICHEP2024 9

Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

• Values to be optimised:

• Input data: and
• The implicit function theorem tells us we can take the

derivatives of the fitted vertex with respect to the weights:

x = (v, {pi})
qi = (d0, z0, ϕ, θ, ρ) Vi

Inclusive Vertex Fit formulation

q1, V1

Perigee Parameters w.r.t.  
the Primary Vertex

Track 1
Track 2

Track 3

q2, V2

q3, V3

v

p1 p2

p3

Predicted Secondary 
Vertex

X

Y

PV
Note: , and

∂χ2

∂x
x=x̂

= 0
d

dw (∂χ2

∂x
x=x̂

) =
d

dw
(0) = 0

Accounting for the implicit dependence of on :

⇒

x̂ w

0 =
∂2χ2

∂x
x=x̂

d x̂
dw

+
∂2χ2

∂x∂w
x=x̂

∂x̂
∂w

= − (∂2χ2

∂x2)
−1

∂2χ2

∂x∂w
x=x̂

https://www.sciencedirect.com/science/article/abs/pii/0168900292908593

I. Ochoa - ICHEP2024

 NDIVE: Neural Differentiable Vertexing layer

10

⏩
Forward pass with iterative numerical

algorithm to perform fit.

⏪
Backward pass done with a

custom derivative

∂x
∂α

= − (∂𝒢̂
∂x)

−1
∂𝒢̂
∂α

Track Params at PV

Weight Predictor
(Transformer)

Differentiable
Vertex

Fitting Layer

SV Position  
& Covariance

NDIVE

Weights

∂x̂
∂w

= − (∂2χ2

∂x2)
−1

∂2χ2

∂x∂w
x=x̂

I. Ochoa - ICHEP2024

Dataset & Inputs

• Top-pair production from proton-proton collisions simulated at

.
• Generated with Pythia8 with ATLAS detector parameterisation via Delphes.

s = 14 TeV

11

Zenodo: Secondary Vertex Finding in Jets Dataset

Training features:
• Track perigee parameters and

their errors

• Signed d0 and z0 significances

• log(track pT / jet pT)

• (track, jet)ΔR

Primary vertex

Secondary vertex

Fragmentation tracks

B-hadron
decay tracks

Tertiary vertices from a
c-hadron decay

https://zenodo.org/record/4044628
https://zenodo.org/record/4044628

I. Ochoa - ICHEP2024

Track selection performance

12

• “Selected tracks”: per-track weights normalised by maximum weight in each jet and required to be above > 0.5

• Efficiency: number of decay tracks selected over all decay tracks

• Purity: number of decay tracks selected over all selected tracks

I. Ochoa - ICHEP2024

Vertex reconstruction performance

13

• “Perfect track selection”: weights set to 0 or 1 based on true origin of track.
• “No track selection”: all tracks in the jet are used in the fit.
• (Right) Boxes indicate IQR of distributions; error bars cover data points that fall within 1.5 x IQR.

• NDIVE makes accurate unbiased estimates of secondary vertex positions.

I. Ochoa - ICHEP2024

Integration in a flavour-tagging model
FTAG baseline

14

pb
pc
plight

ATL-PHYS-PUB-2022-027
ATL-PHYS-PUB-2023-021

Track Params at PV

Track
Processor

Jet Flavour Classifier

Track Origin Classifier

Track Pair Classifier

https://cds.cern.ch/record/2811135
https://cds.cern.ch/record/2866601/

I. Ochoa - ICHEP2024

Integration in a flavour-tagging model
FTAG+NDIVE

15

pb
pc
plight

This is one possible way of integrating NDIVE, other formulations are possible.

Track Params at PV

Track
Processor

Track
Extrapolator

Jet Flavour
Classifier

Track Origin
Classifier

Track Pair
Classifier

Per Track
Concat.

Vertex

NDIVE

Track Params
at SV

Track
Processor

I. Ochoa - ICHEP2024

Model comparison: ROC curve

16

Db = log
pb

(1 − fc)pl + fc pc

fc = 0.05

• NDIVE integration improves flavour tagging

performance.

I. Ochoa - ICHEP2024

Future prospects

• These methodological developments are
generic, applicable to other vertex fitting
algorithms and other schemes for integrating
vertex information into neural networks.

• Further improvement is possible with better
track selection methods, as represented by
the ideal scenario model where the tracks are
selected “perfectly”.

17

I. Ochoa - ICHEP2024

 Summary

• We introduce NDIVE: a neural differentiable vertexing layer
• First differentiable vertex fitting algorithm.

• Vertex fitting formulated as an optimisation problem:
• Gradients of optimised solution vertex defined through implicit differentiation.
• Can be passed to upstream or downstream NN components for training.

• Application of differential programming for integrating physics knowledge into HEP NNs:
• NDIVE can be integrated into b-tagging algorithms, explicitly reintroducing vertex geometry.
• Part of wider application of differentiable programming to HEP!

18

github repository

preprint

https://github.com/rachsmith1/NDIVE
https://arxiv.org/pdf/2310.12804.pdf

Backup

I. Ochoa - ICHEP2024

b-quarks → b-hadrons → b-jets

20

• b-jets contain the decay particles of long-

lived b-hadrons and some additional

particles.

• This leads to unique characteristics that

distinguish them from light (u,d,s,g) and to a

lesser extent charm (c) jets:

• A secondary vertex

• Tracks with large impact parameters

• Leptons from the b-hadron decay

d0: transverse impact parameter

I. Ochoa - ICHEP2024

Track parameterisation

21

R

P

⃗d0 ⃗ptrk
ϕP

y

x z

ρϕ

R

P
z0

θ0

Tracks described by five parameters and a reference point
(typically the origin), using a perigee representation:

d0 : signed transverse impact parameter
z0 : longitudinal impact parameter
ϕ : polar angle of trajectory
θ : azimuthal angle of trajectory
ρ : signed curvature

I. Ochoa - ICHEP2024

Track Extrapolator

22

Generic position V along the track trajectory parameterised by
considering the track’s perigee representation wrt a reference R:

xV = xP + d0 cos (ϕ +
π
2) + ρ [cos (ϕV +

π
2) − cos (ϕ +

π
2)]

yV = yP + d0 sin (ϕ +
π
2) + ρ [sin (ϕV +

π
2) − sin (ϕ +

π
2)]

zV = zP + z0 −
ρ

tan(θ) [ϕV − ϕ]

x

y

R

P

T
V

d0

d′￼0

Additional track representations can be defined by considering alternative reference points (the
NDIVE secondary vertex estimate) and finding the point of closest approach to the trajectory.
• Implemented using JAX’s autodiff.

I. Ochoa - ICHEP2024

Billoir algorithm for inclusive vertex fitting

• Track parameters defined as nonlinear function of the vertex position and momentum vectors of the

tracks at that position:

• First-order Taylor expansion of hi expanded at an estimate of the vertex position and track momenta:

• Iterate fit until convergence, expanding the functions around the new expansion point each time:

• Afterwards we rewrite the track parameters .

• The statistic of the fit is then:

qi = hi(v, pi)

qi ≈ Aiv + Bipi + ci

hi

q̂i = hi(v̂, p̂i)

χ2

23

I. Ochoa - ICHEP2024

• Specify the conditions we want the layer’s output to satisfy:

• We need the derivative of a fit vertex () with respect to the

parameters to train the upstream neural network.

• Note that at the minimum of we have (when evaluated at):

• Taking the derivative wrt and accounting for the implicit

dependence of on :

 ⇒

x̂(α) = arg min
x

𝒮(x, α)

x

α

𝒮 x̂(α)
∂𝒮(x, α)

∂x
= 0

α

x̂ α

0 =
d

dα
𝒢̂ =

∂𝒢̂
∂α

+
∂𝒢̂
∂x

∂x
∂α

∂x
∂α

= − (∂𝒢̂
∂x)

−1
∂𝒢̂
∂α

Implicit differentiation

24

x = (vertex, {pi})

α = (weights, tracks, cov)

𝒢̂ = ∂x𝒮(x̂, α)

Derivatives of the fitted vertex with respect to
the input parameters (at the solution point!)

• Explicit vs implicit layers
• An explicit layer with input and output corresponding to the application of some explicit function

:

• An implicit layer would instead be defined via a joint function of both and , where the output of of

the layer is required to satisfy some constraint such as finding the root of an equation:

• Differentiable optimisation as a layer
• Implicit differentiation to compute gradients of solutions of implicit functions, optimisations or

differential equations.

x z

f

z = f (x)

x z

z

Find z such that g(x, z) = 0

25

http://implicit-layers-tutorial.orgImplicit layers (I)

26

http://implicit-layers-tutorial.orgImplicit layers (II)

