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‘ Introduction (I)

e Secondary vertex (SV): a point where particles are

produced in a collision or a decay

e SV reconstruction:

1. What set of particles have been produced at the

same vertex?

Track 1
Track 2

SV
Track 3

2.What is the vertex position?

3.Can we improve the estimate of the track

parameters by imposing a vertex constraint?
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PV

v

PV = Primary Vertex
SV = Secondary Vertex



‘ Introduction (ll)

» Vertex finding: grouping tracks that

originate at the same point in space

e Vertex fitting: given a set of N tracks and
their track parameters (J; and associated
covariance matrices Vl-, estimate the vertex

position v and the momentum vectors p; of

all tracks at the vertex.

= E.g. via the minimisation of a weighted x2
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q; = (do, 20,9 0. p)

dy : signed transverse impact parameter
zo : longitudinal impact parameter

¢ : polar angle of trajectory

6 : azimuthal angle of trajectory Track 1
p : signed curvature Track 2
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CERN Data Science Seminar by S. Stroud obo ATLAS

‘ Aim of this work

e Secondary vertex reconstruction is usually performed by manually optimised / low-
level algorithms.
e The outcome is then fed into downstream machine learning algorithms (DLT by ATLAS).
* |n state-of-the-art algorithms (GN1 & GN2 by ATLAS), a single end-to-end neural
network is employed with no intermediate low-level algorithms, but also no explicit

secondary (or tertiary) vertex reconstruction.

Can we integrate vertex reconstruction into a

ML end-to-end trainable algorithm?
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https://indico.cern.ch/event/1232499/attachments/2602341/4494127/2023-03-01_GN1_Seminar.pdf

‘ UNDIVE: Neural Differentiable Vertexing layer

¢ We propose to explicitly reintroduce vertex reconstruction into end-to-end ML b-tagging

algorithms via a vertexing layer that performs both vertex finding and vertex fitting.

Weight Predictor Differentiable
(Transformer) Vertex
Fitting Layer

Track Params at PV SV Position
& Covariance

Vertex fitting formulated as an optimization problem, and using implicit

differentiation to compute the derivative of the fitted vertex.
Differentiable programming for integrating domain knowledge into NN training.
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‘ UNDIVE: Neural Differentiable Vertexing layer

Loss function: mean
euclidean distance
between true and

Vertex fitting algorithm with ;
predicted vertex

tracks and weights as inputs
and no trainable parameters

NDIVE
Weight Predictor N % Differentiable
Al

Transformer neural network trained
to assign weights to tracks

A [ 3

(Transformer) Vertex >
Weights Fitting Layer
>
Track Params at PV {w;} x = (v, (p.}) SV Position

& Covariance

4 Vi

Once a vertex solution is found, the track weights are adjusted
by leveraging the differentiable vertex fitter.
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Billoir, Qian in Fast vertex fitting with a local parametrization of track

‘ Inclusive Vertex Fit formulation

Track 1 Track 2
ra
vA
* Values to be optimised: x = (v, {p,})
P,
* Input data: ¢g. = 0 naV; ~p2
put data: ¢; = (dy, 2y, ¢. 0, p) and 'V, > Track 3
v Ps
Predicted Secondary
Vertex
>
X

Perigee Parameters w.r.t.
the Primary Vertex

I. Ochoa - ICHEP2024


https://www.sciencedirect.com/science/article/abs/pii/0168900292908593

Billoir, Qian in Fast vertex fitting with a local parametrization of track

Inclusive Vertex Fit formulation

Track 1
Track 2
vA
* Values to be optimised: x = (v, {p,})
[ ] . = . p2
Input data: g; = (d,, zp. ¢, 0, p) and V, > Track 3
* The following objective function is minimised: v Ps
Predicted Secondary
) N _ Vertex
72 = ) wig,—h(v.p) V(g - h(v.p)) >
i=1 X
X(tracks, w) = arg min y2(x;tracks, w) Perigee Parameters w.r.t.
the Primary Vertex

h,(v, p;) : track model
w; : weight of track i to the vertex fit
implicitly dependent on w
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https://www.sciencedirect.com/science/article/abs/pii/0168900292908593

Billoir, Qian in Fast vertex fitting with a local parametrization of track

Inclusive Vertex Fit formulation

Track 1
Track 2
vA
* Values to be optimised: x = (v, {p,})
Input d dyr 200 .6.p) and V. 3
[ ] : .= . 2
nput data: ¢, = (d,, 2y, ¢, 0. p) and V, > Track 3
e The implicit function theorem tells us we can take the v Ps
derivatives of the fitted vertex with respect to the weights: PrediCt?/d ?econdary
ertex
>
oy> oy d X
Note: 2—| =0,and—(2—| )=—(©0)=0
ox | dw\ ox | | dw

Perigee Parameters w.r.t.
the Primary Vertex

Accounting for the implicit dependence of X on w:
. 02)(2 dR 62)(2 o0x 62)(2 62)(2
= + . —

7).4 dw  0xow

X=X

=
. ow 0x2 0xXow

X=X
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https://www.sciencedirect.com/science/article/abs/pii/0168900292908593

‘ UNDIVE: Neural Differentiable Vertexing layer

)

Forward pass with iterative numerical

algorithm to perform fit.

A NDIVE V7 A
Differentiable

Weight Predictor Vertex

(Transformer) Weights Fitting Layer
>

 ——

Track Params at PV SV Position

, -1 & Covariance
ox _ [9% ’ ‘e Backward pass done with a
ow 7). 19). %%

y 4
=k custom derivative A
- VN
10
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‘ Dataset & Inputs

® Top-pair production from proton-proton collisions simulated at

Vs =14 TeV.

e Generated with Pythia8 with ATLAS detector parameterisation via Delphes.
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Number of decay tracks in jet

Tertiary vertices from a
c-hadron decay

B-hadron
decay tracks

Secondary vertex

Fragmentation tracks

Primary vertex

Training features:

Track perigee parameters and

their errors

Signed dg and zg significances
* |og(track pr/ jet pr)
* AR (track, jet)
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https://zenodo.org/record/4044628
https://zenodo.org/record/4044628

‘ Track selection performance

e Efficiency: number of decay tracks selected over all decay tracks

e Purity: number of decay tracks selected over all selected tracks
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e “Selected tracks”: per-track weights normalised by maximum weight in each jet and required to be above > 0.5
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SV Position
& Covariance
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® _.N?:e:ipmdw S V — G _\z/
Vertex reconstruction performance *. =

e NDIVE makes accurate unbiased estimates of secondary vertex positions.
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e "Perfect track selection”: weights set to 0 or 1 based on true origin of track.
e “No track selection”: all tracks in the jet are used in the fit.

e (Right) Boxes indicate IQR of distributions; error bars cover data points that fall within 1.5 x IQR.
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ATL-PHYS-PUB-2022-027

Integration in a flavour-tagging model ATL-PHYS-PUB-2023-021

FTAG baseline

Pp
—> Jet Flavour Classifier

‘ Plight

> Uzlek » Track Origin Classifier
Processor

Track Params at PV

—> Track Pair Classifier
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https://cds.cern.ch/record/2811135
https://cds.cern.ch/record/2866601/

Integration in a flavour-tagging model

FTAG+NDIVE
> NDIVE
v
}‘ Vertex
1
M Track Params ¢ Jet Flavour
] Track at SV > 4 Track > Classifier
Extrapolator / Processor
Track Params at PV Track C.)r.|g|n
Classifier
* Per Track
- A Track Concat. .
- Processor —p> Track _P_alr
/ Classifier

Pp
Pc
Plight

This is one possible way of integrating NDIVE, other formulations are possible.
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‘ Model comparison: ROC curve

_ Pp

D, = log
(1 _fc)pl +fcpc

£.=0.05

e NDIVE integration improves flavour tagging

performance.
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c/light-jet rejection
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---- light-jet rejection FTAG baseline
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‘ Future prospects

104
—— c-jet rejection FTAG+perfect track selection
—— light-jet rejection FTAG+perfect track selection
---- c-jet rejection FTAG baseline
e These methodological developments are 10% “ lightijet rejection FTAG baseline
: . . s
generic, applicable to other vertex fitting gl
. . . v e
algorithms and other schemes for integrating o 104
vertex information into neural networks. 5
D [ — \\\\\\\
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¥ Summary

e We introduce NDIVE: a neural differentiable vertexing layer

e First differentiable vertex fitting algorithm.

e Vertex fitting formulated as an optimisation problem:

preprint A I'XiV

Differentiable Vertex Fitting for Jet Flavour Tagging

Rachel . C. Smith,"* Tnés Ochoa,? * Riiben Tn Jonathan Shoemaker,! and Michael Kagan’:*

. Lisbon

for flavour tagging and improve heavy flavour jet classi

github repository 0

e Gradients of optimised solution vertex defined through implicit differentiation.

e Can be passed to upstream or downstream NN components for training.

* Application of differential programming for integrating physics knowledge into HEP NNs:

e NDIVE can be integrated into b-tagging algorithms, explicitly reintroducing vertex geometry.

e Part of wider application of differentiable programming to HEP!
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https://github.com/rachsmith1/NDIVE
https://arxiv.org/pdf/2310.12804.pdf
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‘ b-quarks — b-hadrons — b-jets

* b-jets contain the decay particles of long-
lived b-hadrons and some additional

particles.

e This leads to unique characteristics that

distinguish them from light (u,d,s,g) and to a

lesser extent charm (c) jets:
Prompt

* Asecondary vertex Tracks

® Tracks with large impact parameters

e | eptons from the b-hadron decay
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‘ Track parameterisation

Tracks described by five parameters and a reference point
(typically the origin), using a perigee representation:
d, : signed transverse impact parameter

2o : longitudinal impact parameter
¢ : polar angle of trajectory
0 : azimuthal angle of trajectory

p : signed curvature
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track

v
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‘ Track Extrapolator

Generic position V along the track trajectory parameterised by

considering the track’s perigee representation wrt a reference R:

Xy = Xp + d; cos (45 +§> +p |cos <¢v+g> — cos <¢ +§>]

yV=yP+dOSiIl<¢ +£> +p sin<¢v+£> —sin<¢+£>]
2 2 2

p
B tan(@) [¢V B ¢]

2y =2p + 2

Additional track representations can be defined by considering alternative reference points (the
NDIVE secondary vertex estimate) and finding the point of closest approach to the trajectory.

* Implemented using JAX’s autodiff.
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‘ Billoir algorithm for inclusive vertex fitting

e Track parameters defined as nonlinear function of the vertex position and momentum vectors of the

tracks at that position: q; = h,(v, p,)

: : : " Oh;
e First-order Taylor expansion of h; expanded at an estimate of the vertex position and track momenta: 4i= %

©€o

q,~Av+Bp,+¢

e [terate fit until convergence, expanding the functions h; around the new expansion point each time: = ?T},;: .
N G, = V!
v=C) A7G;(I-B;W;BfG;)(q; —c;) D, = ATG,B;
= Dy = iAiTGiAi
pi=W,BIG;(q; —c; —A¥), i=1,...,N Wl = ;;i;GiBi

N —1
C= (DO -3 DiWiDiT)

e Afterwards we rewrite the track parameters q, = h.(V, p,). i=1

N
° 2 M M "+ 1 . A A
The y~ statistic of the fit is then: Xz _ E :(Qz . qi)TGz’(Qi . Qi)
=1
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‘ Implicit differentiation

Specify the conditions we want the layer’s output to satisfy:
X = (Vertexv {pl})
X(a) = arg min (X, Q)

* a = (weights, tracks, cov)

We need the derivative of a fit vertex (x) with respect to the

parameters a to train the upstream neural network.

Note that at the minimum of & we have (when evaluated at X(«)):
IS(x,a) 0

7)< € =0.8R%,q)
Taking the derivative wrt @ and accounting for the implicit

dependence of X on a:

d -
da oo 0X da o

A A ~ _1 N
0¢ 0% ox |0X 0% 0% Derivatives of the fitted vertex with respect to
a - oa the input parameters (at the solution point!)
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I m p I iCit Iaye rs ( I ) http://implicit-layers-tutorial.org

e Explicit vs implicit layers
e An explicit layer with input x and output z corresponding to the application of some explicit function
f
z=f)
e An implicit layer would instead be defined via a joint function of both x and z, where the output of of
the layer z is required to satisfy some constraint such as finding the root of an equation:
Find z such that g(x,z) =0
e Differentiable optimisation as a layer

e Implicit differentiation to compute gradients of solutions of implicit functions, optimisations or

differential equations.
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I m p I iCit Iaye rs ( I I ) http://implicit-layers-tutorial.org

The implicit function theorem. Let f : R? x R" — R"™ anday € R?, zy € R" be such that

1 f(a(), Z()) =0, and
2. f is continuously differentiable with non-singular Jacobian 0y f(ag, z9) € R™™.

Then there exist open sets S,, C R and S,, C R" containing ay and zy, respectively, and a unique continuous function z* : S,, — S
such that

1 29 = 2*(ag),
2 f(a,z*(a)) =0 Vae S, and
3. 2" is differentiable on S, .
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