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Introduction (I)

• Secondary vertex (SV): a point where particles are 
produced in a collision or a decay 

• SV reconstruction: 

1. What set of particles have been produced at the 
same vertex? 

2. What is the vertex position? 

3. Can we improve the estimate of the track 
parameters by imposing a vertex constraint?
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• Vertex finding: grouping tracks that 
originate at the same point in space 

• Vertex fitting: given a set of  tracks and 

their track parameters  and associated 

covariance matrices , estimate the vertex 

position  and the momentum vectors  of 

all tracks at the vertex.  
➡E.g. via the minimisation of a weighted χ2
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Introduction (II)
 

 
 

 
 

qi = (d0, z0, ϕ, θ, ρ)
d0 : signed transverse impact parameter
z0 : longitudinal impact parameter
ϕ : polar angle of trajectory
θ : azimuthal angle of trajectory
ρ : signed curvature
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Aim of this work
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Can we integrate vertex reconstruction into a 
ML end-to-end trainable algorithm?

• Secondary vertex reconstruction is usually performed by manually optimised / low-
level algorithms. 

• The outcome is then fed into downstream machine learning algorithms (DL1 by ATLAS). 

• In state-of-the-art algorithms (GN1 & GN2 by ATLAS), a single end-to-end neural 
network is employed with no intermediate low-level algorithms, but also no explicit 
secondary (or tertiary) vertex reconstruction.  

CERN Data Science Seminar by S. Stroud obo ATLAS

https://indico.cern.ch/event/1232499/attachments/2602341/4494127/2023-03-01_GN1_Seminar.pdf
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 NDIVE: Neural Differentiable Vertexing layer 
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• We propose to explicitly reintroduce vertex reconstruction into end-to-end ML b-tagging 
algorithms via a vertexing layer that performs both vertex finding and vertex fitting.

Vertex fitting formulated as an optimization problem, and using implicit 
differentiation to compute the derivative of the fitted vertex. 
Differentiable programming for integrating domain knowledge into NN training.
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Track Params at PV

Weight Predictor
(Transformer)

Differentiable 
Vertex 

Fitting Layer

SV Position  
& Covariance

NDIVE

Weights

 NDIVE: Neural Differentiable Vertexing layer 
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Vertex fitting algorithm with 
tracks and weights as inputs 
and no trainable parameters

x = (v, {pi}){wi}

qi, Vi

Transformer neural network trained 
to assign weights to tracks

Once a vertex solution is found, the track weights are adjusted 
by leveraging the differentiable vertex fitter.

Loss function: mean 
euclidean distance 
between true and 
predicted vertex
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Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

• Values to be optimised:  

• Input data:  and  

x = (v, {pi})
qi = (d0, z0, ϕ, θ, ρ) Vi

Inclusive Vertex Fit formulation
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https://www.sciencedirect.com/science/article/abs/pii/0168900292908593
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Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

• Values to be optimised:  

• Input data:  and  
• The following objective function is minimised: 

x = (v, {pi})
qi = (d0, z0, ϕ, θ, ρ) Vi

Inclusive Vertex Fit formulation

χ2 =
N

∑
i=1

wi(qi − hi(v, pi))TV−1
i (qi − hi(v, pi))
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 track model 
 weight of track  to the vertex fit

hi(v, pi) :
wi : i

v * (tracks, w) = arg min
v

χ2(v; tracks, w)

x̂(tracks, w) = arg min
x

χ2(x; tracks, w)

implicitly dependent on w

https://www.sciencedirect.com/science/article/abs/pii/0168900292908593
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Billoir, Qian in Fast vertex fitting with a local parametrization of tracks

• Values to be optimised:  

• Input data:  and  
• The implicit function theorem tells us we can take the 

derivatives of the fitted vertex with respect to the weights:

x = (v, {pi})
qi = (d0, z0, ϕ, θ, ρ) Vi

Inclusive Vertex Fit formulation
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Note: , and  

∂χ2

∂x
x=x̂

= 0
d

dw ( ∂χ2

∂x
x=x̂

) =
d

dw
(0) = 0

Accounting for the implicit dependence of  on :

⇒ 

x̂ w

0 =
∂2χ2

∂x
x=x̂

d x̂
dw

+
∂2χ2

∂x∂w
x=x̂

∂x̂
∂w

= − ( ∂2χ2

∂x2 )
−1

∂2χ2

∂x∂w
x=x̂

https://www.sciencedirect.com/science/article/abs/pii/0168900292908593
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 NDIVE: Neural Differentiable Vertexing layer 
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⏩  
Forward pass with iterative numerical 

algorithm to perform fit.

⏪  
Backward pass done with a 

custom derivative
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= − ( ∂�̂�
∂x )

−1
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Dataset & Inputs 

• Top-pair production from proton-proton collisions simulated at 

.  
• Generated with Pythia8 with ATLAS detector parameterisation via Delphes. 

s = 14 TeV
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Zenodo: Secondary Vertex Finding in Jets Dataset

Training features: 
• Track perigee parameters and 

their errors 

• Signed d0 and z0 significances 

• log(track pT / jet pT) 

•  (track, jet)ΔR

Primary vertex

Secondary vertex

Fragmentation tracks

B-hadron 
decay tracks

Tertiary vertices from a 
c-hadron decay

https://zenodo.org/record/4044628
https://zenodo.org/record/4044628
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Track selection performance 
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• “Selected tracks”: per-track weights normalised by maximum weight in each jet and required to be above > 0.5

• Efficiency: number of decay tracks selected over all decay tracks 

• Purity: number of decay tracks selected over all selected tracks 
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Vertex reconstruction performance
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• “Perfect track selection”: weights set to 0 or 1 based on true origin of track. 
• “No track selection”: all tracks in the jet are used in the fit. 
• (Right) Boxes indicate IQR of distributions; error bars cover data points that fall within 1.5 x IQR.

• NDIVE makes accurate unbiased estimates of secondary vertex positions. 



I. Ochoa - ICHEP2024

Integration in a flavour-tagging model  
FTAG baseline  
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plight

ATL-PHYS-PUB-2022-027 
ATL-PHYS-PUB-2023-021
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https://cds.cern.ch/record/2811135
https://cds.cern.ch/record/2866601/
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Integration in a flavour-tagging model  
FTAG+NDIVE

15
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This is one possible way of integrating NDIVE, other formulations are possible.
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Model comparison: ROC curve
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Db = log
pb

(1 − fc)pl + fc pc

fc = 0.05

• NDIVE integration improves flavour tagging 

performance.
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Future prospects

• These methodological developments are 
generic, applicable to other vertex fitting 
algorithms and other schemes for integrating 
vertex information into neural networks. 

• Further improvement is possible with better 
track selection methods, as represented by 
the ideal scenario model where the tracks are 
selected “perfectly”.

17
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  Summary

• We introduce NDIVE: a neural differentiable vertexing layer 
• First differentiable vertex fitting algorithm. 

• Vertex fitting formulated as an optimisation problem: 
• Gradients of optimised solution vertex defined through implicit differentiation. 
• Can be passed to upstream or downstream NN components for training. 

• Application of differential programming for integrating physics knowledge into HEP NNs: 
• NDIVE can be integrated into b-tagging algorithms, explicitly reintroducing vertex geometry. 
• Part of wider application of differentiable programming to HEP!

18

github repository

preprint

https://github.com/rachsmith1/NDIVE
https://arxiv.org/pdf/2310.12804.pdf


Backup
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b-quarks → b-hadrons → b-jets
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• b-jets contain the decay particles of long-

lived b-hadrons and some additional 

particles. 

• This leads to unique characteristics that 

distinguish them from light (u,d,s,g) and to a 

lesser extent charm (c) jets:  

• A secondary vertex 

• Tracks with large impact parameters 

• Leptons from the b-hadron decay

d0: transverse impact parameter 
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Track parameterisation
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R
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Tracks described by five parameters and a reference point 
(typically the origin), using a perigee representation: 

 
 

 
 

d0 : signed transverse impact parameter
z0 : longitudinal impact parameter
ϕ : polar angle of trajectory
θ : azimuthal angle of trajectory
ρ : signed curvature
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Track Extrapolator
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Generic position V along the track trajectory parameterised by 
considering the track’s perigee representation wrt a reference R: 

 

 

xV = xP + d0 cos (ϕ +
π
2 ) + ρ [cos (ϕV +

π
2 ) − cos (ϕ +

π
2 )]

yV = yP + d0 sin (ϕ +
π
2 ) + ρ [sin (ϕV +

π
2 ) − sin (ϕ +

π
2 )]

zV = zP + z0 −
ρ

tan(θ ) [ϕV − ϕ]

x

y

R

P

T
V

d0

d′ 0

Additional track representations can be defined by considering alternative reference points (the 
NDIVE secondary vertex estimate) and finding the point of closest approach to the trajectory. 
• Implemented using JAX’s autodiff.  
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Billoir algorithm for inclusive vertex fitting

• Track parameters defined as nonlinear function of the vertex position and momentum vectors of the 

tracks at that position:  

• First-order Taylor expansion of hi expanded at an estimate of the vertex position and track momenta:  

 

• Iterate fit until convergence, expanding the functions  around the new expansion point each time: 

• Afterwards we rewrite the track parameters . 

• The  statistic of the fit is then:

qi = hi(v, pi)

qi ≈ Aiv + Bipi + ci

hi

q̂i = hi(v̂, p̂i)

χ2

23
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• Specify the conditions we want the layer’s output to satisfy: 

 

• We need the derivative of a fit vertex ( ) with respect to the 

parameters  to train the upstream neural network. 

• Note that at the minimum of  we have (when evaluated at ): 

 

• Taking the derivative wrt  and accounting for the implicit 

dependence of  on : 

 ⇒ 

x̂(α) = arg min
x

𝒮(x, α)

x

α

𝒮 x̂(α)
∂𝒮(x, α)

∂x
= 0

α

x̂ α

0 =
d

dα
�̂� =

∂�̂�
∂α

+
∂�̂�
∂x

∂x
∂α

∂x
∂α

= − ( ∂�̂�
∂x )

−1
∂�̂�
∂α

Implicit differentiation 
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x = (vertex, {pi})

α = (weights, tracks, cov)

�̂� = ∂x𝒮(x̂, α)

Derivatives of the fitted vertex with respect to 
the input parameters (at the solution point!)



• Explicit vs implicit layers 
• An explicit layer with input  and output  corresponding to the application of some explicit function 

: 

 

• An implicit layer would instead be defined via a joint function of both  and , where the output of of 

the layer  is required to satisfy some constraint such as finding the root of an equation: 

 

• Differentiable optimisation as a layer 
• Implicit differentiation to compute gradients of solutions of implicit functions, optimisations or 

differential equations.

x z

f

z = f (x)

x z

z

Find z such that g(x, z) = 0

25

http://implicit-layers-tutorial.orgImplicit layers (I)
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http://implicit-layers-tutorial.orgImplicit layers (II)


