High granularity small-pad resistive Micromegas for high-rate environment

Roberto Di Nardo

on behalf of the RHUM collaboration:

M. Alviggi ^(1,2), M. Biglietti ⁽³⁾, M.T. Camerlingo ⁽⁸⁾, K. Chmiel ^(3,4), M. Della Pietra ^(1,2),

C. Di Donato (1,6), R. Di Nardo (3,4), P. Iengo (1), M. Iodice (3), R. Orlandini (3,4) ,

S. Perna^(1,2), F. Petrucci^(3,4), G. Sekhniaidze⁽¹⁾, M. Sessa⁽⁷⁾

(1) INFN Napoli (2) University Napoli Federico II, (3) INFN Roma Tre (4) University Roma Tre, (5) CERN, (6)University Napoli Parthenope, (7) INFN ROMA 2, (8) INFN Bari

XLII International Conference on High Energy Physics July 18th - 24th 2024 Prague (Czech Republic)

Istituto Nazionale di Fisica Nucleare

The RHUM project

RHUM Resistive High granUlarity **Micromegas**

- Develop a MicroPatternGaseousDetector detector, based on the Micromegas technology, able to work efficiently at particle rates up to several MHz/cm²
- Implement a small pad readout to reduce the occupancy
	- O(mm²) for high-rate capability and good spatial resolution in both coordinates
- Optimize the spark protection resistive scheme to achieve stable operation at high rate/gain
- Demonstrate the detector scalability to large surfaces
- Simplify the construction techniques for industrial production
- R&D started in 2015 (INFN and University of Napoli and Roma Tre) in collaboration with CERN and with the CERN PCB Workshop (Rui De Olivera) for prototype construction.
	- Very fwd muon tracking extension in existing experiments

Possible applications in HEP

- Muon detector/TPC @ future accelerators
	- Readout for sampling calorimeter

see L.Longo's talk on Saturday!

• …

Micromegas technology

- Resistive Micromegas technology \rightarrow cover readout copper strip/pad with a resistive insulator to suppress discharges
- Drift region of ~5 mm width $(\rightarrow$ E~60 V/mm) and

Amplification region of \sim 100 μ m (E \sim 5 kV/mm) separated by a metallic micro-mesh, supported by 0.8 mm diameter pillars

- Geometrical and electrical configuration to guarantee a fast charge evacuation
	- fundamental for high-rate applications
- Extensively studied different solutions for the resistive layout on small prototypes
	- Optimal configuration: Double layer of resistive foils based on Diamon Like Carbon (DLC) structures connected through conducting vias – DLC foil resistivity of 20-40 M Ω/\Box
- Demonstrated to be a solid detector technology for HEP experiments

The prototypes size evolution

Small size prototypes

Several resistive layout tested

Active area: 4.8 x 4.8 cm² active region **Anode plane pad size**: 0.8 x 2.8 mm² \rightarrow 768 pads

48 pads -1 mm pitch ("x") 16 pads $-$ 3 mm pitch ("y")

Two detectors: Paddy400-1 & Paddy400-2

Active area : 20 cm x 20 cm (partial readout in central part, ~40%) **Anode plane pad size**: 1x8mm² → 4800 pads

• Tests performed also in "common cathode" configuration

Medium size prototypes Large size prototypes

Paddy-2000 - "The Big one"

Active area : 50 cm x 40 cm **Anode plane pad size**: Central part $1x8mm^2 \rightarrow 512$ pads Surrounding area $10x10mm^2 \rightarrow 2048$ pads

•I will mainly focus on the results obtained for the medium and large prototypes

Performances for small size prototypes

Roberto Di Nardo – Università and INFN Roma Tre

- Rate capability measured with X-rays for the 20x20 cm² detector
- Detector stable with almost no gain loss up to 1MHz/cm²
	- In general performance similar to the small prototypes
- Gain dependence on the irradiated area studied
	- Residual effect of charging spread on the resistive layer \rightarrow increasing gain drop with larger surfaces
	- Logarithmic dependence, effect sizable only at very high rate on very large surfaces
	- $-$ At 3MHz/cm² on 50x50cm² surface expect a modest 30% gain drop \rightarrow can be compensated easily by 10V increase of the amplification voltage

Spatial resolution

- Cluster position evaluated with an extended definition of the charge weighted centroid (p=0.65)
- Position resolution obtained fitting the residual distribution in the precision coordinate w.r.t. the reconstructed muon track
	- Extrapolation uncertainty~50µm (subtracted in quad) , systematic uncertainty ~5%
- At high gain the resolution is limited by poor charge measurements in APV due to saturation

Efficiency

- Results from test beam @ CERN H4 muon beam
- Fiducial cut at 1.5mm wrt extrapolated position measured with external tracking chambers
- Efficiency @ plateau for perpendicular tracks is nearly 100% except at pillar positions

• Evaluated by computing the time difference between on-track clusters in two different chambers

- Common cathode configuration
- Fast gas mixture Ar:CF4:iC4H10 (88:10:2) exploited
- Drift velocities at various E_{drift} measured using the hit time distributions
	- In agreement with simulation
- Measured resolution for the medium size prototype \sim 6ns at $v_{\rm drift} \sim$ 11 cm/ μ s

Preliminary results of the 50x40 cm² prototype

Chamber tested for the first time during a test beam in 2024 at CERN H4

- Similar performances achieved as smaller prototypes
- The full analysis of the collected data is in progress

Prototype implementing the capacitive sharing

- First implementation of the capacitive sharing principle in a DLC-Double layer resistive **Micromegas**
- Charge shared in large readout pads through the capacitive coupling between stack of layers of pads.
	- –Good spatial resolution and reduction of the readout channels
- Suitable for low- medium- rate applications Pad size of "top-layer" (signal induction): 2.5x2.5 mm²

Side-L: four readout layers capacitive sharing: I layer 1.25x1.25mm², II layer 2.5x2.5mm², III layer 5x5 mm², IV layer $10x10$ mm²

Side-S: three readout layers capacitive sharing: I layer 1.25x1.25mm², II layer 2.5x2.5 mm², III layer 5x5 mm²

Concept from R. De Oliveira and K. Gnanvo et al., NIMA 1047 (2023) 167782)

Resolution & efficiency with capacitive sharing

- Resolution measured in the region with large pads (sharing with 4 stacked layers) ~ 320µm
	- factor \sim 1/30 of the readout pad size
- Resolution measured in the region with small pads (sharing with 3 stacked layers) ~ 200µm
	- factor \sim 1/20 of the readout pad size
- Plateau efficiency at ~97%, comparable with the prototypes non implementing the capacitive sharing

Padx 10 x 10 mm²

Pady 10 x 10 mm² Padx 5 x 5 mm²

540

Pady 5 x 5 mm²

520

 560
V_{amp}[V]

- Several Small Pads Micromegas prototypes have been built employing different solutions for the resistive layout
	- Best performances for high-rate with Diamond-Like Carbon (DLC) resistive foils
- Performances achieved:
	- $-$ stable operation up to 20 MHz/cm² with gain $>10^4$
	- detector efficiency > 97% (limited by pillars for ⊥ tracks, ~100% otherwise)
	- position resolution < 100 μm
	- Time resolution down to 6ns with fast gas mixture (@vdrift γ 11cm/ μ s)
- New large area prototypes built and tested up to ~50x40 cm²
	- Very stable working condition even at high rate
	- Comparable performances wrt small prototypes
- R&D started to exploit capacitive sharing concept for low-medium rate applications
- Design simplification and cost reduction on the way
	- Production at industry (ELTOS) is being investigated
- R&D fully aligned to the ECFA Roadmap for Detectors Research and Development
- Ready for new R&D focusing on applications: large area muon systems and sampling calorimetry

The 20x20 cm² prototype

- $-$ active area: 200x192 mm²
- Pads 1x8 mm² Total Number of Pads: 4800
- Double layer DLC with grounding vias every 8 mm
- Panasonic connectors on the back of the detector
- Partially readout: 1920 connected pads out of 4800 tot pads

Standard layout

Read-out pads (in yellow in the figures), normally placed under the two resistive DLC foils.

In the new layout they are in between them \rightarrow

capacitance increase to collect a larger fraction of the signal

Roberto Di Nardo – Università and INFN Roma Tre 17 anno 17 ann

Pad-Patterned (PAD-P3)

Resistance from top resistive pad to anode pad: 15-25 MΩ Independent PADs, limited or negligible charge spread

Standard DLC (DLC20)

Resistivity: Top and Bottom foils ~20 MΩ/□ Grounding vias every 6 mm (12 mm) in the left (right) half of the detector Read-out pads below the resistive DLC foils

DLC-SBU (SBU3) [Sequential Build-Up technique exploiting copper clad DLC] Resistivity: Top 22 ± 1 M Ω/\Box – Bottom 42 ± 8 M Ω/\Box Readout pads between the resistive DLC foils

DLC-SG [Strip Grid grounding scheme] Resistivity: Top 40 ± 2 M Ω/\Box – Bottom 38 ± 6 M Ω/\Box Readout pads between the resistive DLC foils Longer pillars to cover the grounding copper strips